設(shè)函數(shù)f(x)的定義域?yàn)?/span>Rx0(x0≠0)f(x)的極大值點(diǎn),以下結(jié)論一定正確的是(  )

A?xRf(x)≤f(x0)

B.-x0f(x)的極小值點(diǎn)

C.-x0是-f(x)的極小值點(diǎn)

D.-x0是-f(x)的極小值點(diǎn)

 

D

【解析】不妨取函數(shù)f(x)x33x,則f′(x)3(x1)(x1),易判斷x0=-1f(x)的極大值點(diǎn),但顯然f(x0)不是最大值,故排除A.

因?yàn)?/span>f(x)=-x33xf′(x)=-3(x1)(x1),易知,-x01f(x)的極大值點(diǎn),故排除B;

又-f(x)=-x33x,[f(x)]′=-3(x1)(x1),易知,-x01為-f(x)的極大值點(diǎn),故排除C;

f(x)的圖象與f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,由函數(shù)圖象的對(duì)稱性可得-x0應(yīng)為函數(shù)-f(x)的極小值點(diǎn).故D正確.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題3第2課時(shí)練習(xí)卷(解析版) 題型:選擇題

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a415S555,則數(shù)列{an}的公差是( )

A B4 C.-4 D.-3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題2第2課時(shí)練習(xí)卷(解析版) 題型:選擇題

對(duì)于集合{a1,a2,,an}和常數(shù)a0,定義:ω

為集合{a1,a2,an}相對(duì)a0正弦方差,則集合相對(duì)a0正弦方差( )

A B C D.與a0有關(guān)的一個(gè)值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題2第1課時(shí)練習(xí)卷(解析版) 題型:選擇題

已知sin αcos α,α(0,π),則tan α( )

A.-1 B.- C D1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題1第5課時(shí)練習(xí)卷(解析版) 題型:解答題

設(shè)f(x)aln xx1,其中aR,曲線yf(x)在點(diǎn)(1f(1))處的切線垂直于y軸.

(1)a的值;

(2)求函數(shù)f(x)的極值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題1第4課時(shí)練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)|xa|.

(1)若不等式f(x)≤3的解集為{x|1≤x≤5},求實(shí)數(shù)a的值;

(2)(1)的條件下,若f(x)f(x5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題1第4課時(shí)練習(xí)卷(解析版) 題型:選擇題

設(shè)關(guān)于x,y的不等式組表示的平面區(qū)域內(nèi)存在點(diǎn)P(x0y0),滿足x02y02.求得m的取值范圍是(  )

A B

C D

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題1第2課時(shí)練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)exex(xRe為自然對(duì)數(shù)的底數(shù))

(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性;

(2)是否存在實(shí)數(shù)t,使不等式f(xt)f(x2t2)≥0對(duì)一切x都成立?若存在,求出t;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊(cè)新課標(biāo)·通用版專題四練習(xí)卷(解析版) 題型:選擇題

{an}為首項(xiàng)為正數(shù)的遞增等差數(shù)列,其前n項(xiàng)和為Sn,則點(diǎn)(nSn)所在的拋物線可能為(  )

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案