【題目】已知函數(shù).
(1)若, 都是從0,1,2,3,4五個數(shù)中任取的一個數(shù),求上述函數(shù)有零點的概率;
(2)若, 都是從區(qū)間上任取的一個數(shù),求成立的概率.
【答案】(1)(2)
【解析】試題分析:
(1)基本事件總數(shù)為個.函數(shù)有零點的條件為., , , , , , , , , , , ,則函數(shù)有零點的概率為.
(2)由幾何概型的計算公式可得事件“”的概率為.
試題解析:
解:(1), 都是從0,1,2,3,4五個數(shù)中任取的一個數(shù),則基本事件總數(shù)為個.
函數(shù)有零點的條件為,即.因為事件“”包含, , , , , , , , , , , ,
所以事件“”的概率為,即函數(shù)有零點的概率為.
(2), 都是從區(qū)間上任取的一個數(shù), ,即,此為幾何模型,如圖可知,事件“”的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】 “一帶一路”是“絲綢之路經濟帶”和“21世紀海上絲綢之路”的簡稱.某市為了了解人們對“一帶一路”的認知程度,對不同年齡和不同職業(yè)的人舉辦了一次“一帶一路”知識競賽,滿分100分(90分及以上為認知程度高),現(xiàn)從參賽者中抽取了人,按年齡分成5組(第一組:,第二組,第三組:,第四組:,第五組:),得到如圖所示的頻率分布直方圖,已知第一組有6人.
(1)求;
(2)求抽取的人的年齡的中位數(shù)(結果保留整數(shù));
(3)從該市大學生、軍人、醫(yī)務人員、工人、個體戶五種人中用分層抽樣的方法依次抽取6人,42人,36人,24人,12人,分別記為1-5組,從這5個按年齡分的組合5個按職業(yè)分的組中每組各選派1人參加知識競賽代表相應組的成績,年齡組中1-5組的成績分別為93,96,97,94,90,職業(yè)組中1-5組的成績分別為93,98,94,95,90.
(i)分別求5個年齡組和5個職業(yè)組成績的平均數(shù)和方差;
(ii)以上述數(shù)據(jù)為依據(jù),評價5個年齡組和5個職業(yè)組對“一帶一路”的認知程度,并談談你的感想.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓右焦點是拋物線的焦點,是與在第一象限內的交點,且.
(1)求的方程;
(2)已知菱形的頂點在橢圓上,頂點在直線上,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線,則下面結論正確的是 ( )
A. 把上各點的橫坐標縮短到原來的倍, 縱坐標不變,再把得到的曲線向左平移個單位長度, 得到曲線
B. 把上各點的橫坐標縮短到原來的倍 ,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線
C. 把上各點的橫坐標伸長到原來的倍 ,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線
D. 把上各點的橫坐標伸長到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校高一數(shù)學考試后,對分(含分)以上的成績進行統(tǒng)計,其頻率分布直方圖如圖所示,分數(shù)在分的學生人數(shù)為人.
(1)求這所學校分數(shù)在分的學生人數(shù);
(2)請根據(jù)頻率發(fā)布直方圖估計這所學校學生分數(shù)在分的學生的平均成績;
(3)為進一步了解學生的學習情況,按分層抽樣方法從分數(shù)在分和分的學生中抽出人,從抽出的學生中選出人分別做問卷和問卷,求分的學生做問卷, 分的學生做問卷的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】陜西省洛川地處北緯35°-36°,東經109°,晝夜溫差,是國內外專家公認的世界最佳蘋果優(yōu)生區(qū),是國家生態(tài)建設示范試點.近幾年,果農為了提高經濟效益,增加了廣告和包裝的投資費用,5年內果農投入的廣告和包裝費用(萬元)與銷售額(萬元)之間有下面對應數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)假設與之間線性相關,求回歸直線方程;
(2)預測廣告和包裝費用為10(萬元)時銷售額是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,已知點,圓
(I)在極坐標系中,以極點為原點,極軸為軸正半軸建立平面直角坐標系,取相同的長度單位,求圓的直角坐標方程;
(II)求點到圓圓心的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線: 的焦點為,過點的直線與相交于、兩點,點關于軸的對稱點為.
(Ⅰ)判斷點是否在直線上,并給出證明;
(Ⅱ)設,求的內切圓的方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com