【題目】日,“國際教育信息化大會”在山東青島開幕.為了解哪些人更關(guān)注“國際教育信息化大會”,某機(jī)構(gòu)隨機(jī)抽取了年齡在-歲之間的人進(jìn)行調(diào)查,并按年齡繪制成頻率分布直方圖,如圖所示,其分組區(qū)間為:,,.把年齡落在區(qū)間內(nèi)的人分別稱為“青少年”和“中老年”.

關(guān)注

不關(guān)注

合計

青少年

中老年

合計

(1)根據(jù)頻率分布直方圖求樣本的中位數(shù)保留兩位小數(shù)和眾數(shù);

(2)根據(jù)已知條件完成列聯(lián)表,并判斷能否有的把握認(rèn)為“中老年”比“青少年”更加關(guān)注“國際教育信息化大會”;

【答案】(1)中位數(shù)約為36.43;(2)有的把握認(rèn)為“中老年”比“青少年”更加關(guān)注“國際教育信息化大會”..

【解析】試題分析:(1)根據(jù)頻率分布直方圖可知樣本的眾數(shù)為,設(shè)樣本的中位數(shù)為,則,求得的值,即可得到數(shù)據(jù)的中位數(shù);

(2)依題意可知,可得抽取的“青少年”共有人,“中老年”共有人,完成的列聯(lián)表,求得的值,作出預(yù)測.

試題解析:

(1)根據(jù)頻率分布直方圖可知樣本的眾數(shù)為40,因為,

設(shè)樣本的中位數(shù)為,則,所以,即樣本的中位數(shù)約為36.43.

(2)依題意可知,抽取的“青少年”共有人,“中老年”共有人.

完成的列聯(lián)表如下:

關(guān)注

不關(guān)注

合計

青少年

中老年

合計

結(jié)合列聯(lián)表的數(shù)據(jù)得

因為,

所以有的把握認(rèn)為“中老年”比“青少年”更加關(guān)注“國際教育信息化大會”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017湖北部分重點中學(xué)高三聯(lián)考)從編號為001,002,…,500的500個產(chǎn)品中用系統(tǒng)抽樣的方法抽取一個樣本,已知樣本編號從小到大依次為007,032,…,則樣本中最大的編號應(yīng)該為(  )

A. 483 B. 482

C. 481 D. 480

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】養(yǎng)路處建造圓錐形無底倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12m,高4m,養(yǎng)路處擬建一個更大的圓錐形倉庫,以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大4m(高不變);二是高度增加4m(底面直徑不變).

(1)分別計算按這兩種方案所建的倉庫的體積;

(2)分別計算按這兩種方案所建的倉庫的表面積;

(3)哪個方案更經(jīng)濟(jì)些?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的最小正周期為π.
(1)求ω的值;
(2)討論f(x)在區(qū)間 上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,其中[x]表示不超過x的最大整數(shù).設(shè)n∈N* , 定義函數(shù)fn(x):f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn1(x))(n≥2),則下列說法正確的有 ①y= 的定義域為 ;
②設(shè)A={0,1,2},B={x|f3(x)=x,x∈A},則A=B;
;
④若集合M={x|f12(x)=x,x∈[0,2]},
則M中至少含有8個元素.(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某班一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,其中,頻率分布直方圖的分組區(qū)間分別為[50,60),[60,70),[70,80),[80,90),[90,100],據(jù)此解答如下問題.
(Ⅰ)求全班人數(shù)及分?jǐn)?shù)在[80,100]之間的頻率;
(Ⅱ)現(xiàn)從分?jǐn)?shù)在[80,100]之間的試卷中任取 3 份分析學(xué)生情況,設(shè)抽取的試卷分?jǐn)?shù)在[90,100]的份數(shù)為X,求X的分布列和數(shù)學(xué)望期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線Γ由曲線C1 (a>b>0,y≤0)和曲線C2 (a>0,b>0,y>0)組成,其中點F1 , F2為曲線C1所在圓錐曲線的焦點,點F3 , F4為曲線C2所在圓錐曲線的焦點,
(Ⅰ)若F2(2,0),F(xiàn)3(﹣6,0),求曲線Γ的方程;
(Ⅱ)如圖,作直線l平行于曲線C2的漸近線,交曲線C1于點A、B,求證:弦AB的中點M必在曲線C2的另一條漸近線上;
(Ⅲ)對于(Ⅰ)中的曲線Γ,若直線l1過點F4交曲線C1于點C、D,求△CDF1面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線的右焦點作一條直線,直線與雙曲線相交于兩點,且,若有且僅有三條直線,則雙曲線離心率的取值范圍為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年某學(xué)科能力測試共有12萬考生參加,成績采用15級分,測試成績分布圖如圖,試估計成績高于11級分的人數(shù)為 (  )

A. 8 000 B. 10 000 C. 20 000 D. 60 000

查看答案和解析>>

同步練習(xí)冊答案