已知的面積為1,點(diǎn)在上,,連結(jié),設(shè)、、中面積最大者的值為,則的最小值為 .
【解析】
試題分析:解:設(shè)CD:CA=k,則因?yàn)辄c(diǎn)D在AC上,所以0<k<1 ,∵DE∥AB,∴△DCE∽△ACB,∴S△DCE:S△ACB=(CD:CA)2=k2,∵S△ABC=1,∴S△DCE=k2; ,∵AD:AC=(AC-CD):AC=1-k,∴S△ABD:S△ABC=AD:AC=1-k,∴S△ABD=1-k,∵DE∥AB,∴CE:BE=CD:AD=k:(1-k) ,∵S△DCE:S△BDE=CE:BE=k:(1-k)∴S△BDE=[(1-k):k]×S△DCE=-k2+k,當(dāng)k2=1-k時(shí),k2+k-1=0,∴k= ;當(dāng)k2=-k2+k時(shí),2k2-k=0,∴k= 當(dāng)1-k=-k2+k時(shí),k2-2k+1=0,∴k=1,故可知y=1-k,0<k≤k2,<k<1,故可知當(dāng)k=時(shí),y有最小值
考點(diǎn):三角形面積
點(diǎn)評(píng):本題考查三角形面積的計(jì)算,考查函數(shù)的最值,考查分段函數(shù),考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3-
| ||
2 |
3-
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:陜西省模擬題 題型:解答題
如圖,已知的半徑是1,點(diǎn)在直徑AB的延長(zhǎng)線上, BC=1, 點(diǎn)P是上半圓上的動(dòng)點(diǎn), 以PC為邊作等邊三角形PCD,且點(diǎn)D與圓心分別在PC的兩側(cè).
(Ⅰ) 若,試將四邊形OPDC的面積y表示成θ的函數(shù);
(Ⅱ) 求四邊形OPDC的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省蘇州市五市三區(qū)高三(上)期中數(shù)學(xué)模擬試卷(一)(解析版) 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分13分)
如圖,已知的半徑為1,點(diǎn)C在直徑AB的延長(zhǎng)線上,BC=1,點(diǎn)P是半圓上的一個(gè)動(dòng)點(diǎn),以PC為邊作正三角形PCD,且點(diǎn)D
與圓心分別在PC兩側(cè).
(1)若,試將四邊形OPDC的面積
y表示成的函數(shù);
(2)求四邊形OPDC面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com