【題目】己知函數(shù), .
(I)求函數(shù)上零點(diǎn)的個(gè)數(shù);
(II)設(shè),若函數(shù)在上是增函數(shù).
求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ)零點(diǎn)個(gè)數(shù)為 (II)的取值范圍是
【解析】試題分析:(1)先求得, 時(shí), 恒成立,可證明時(shí), ,可得在上單調(diào)遞減,根據(jù)零點(diǎn)定理可得結(jié)果;(2)化簡(jiǎn)為分段函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,討論兩種情況,分別分離參數(shù)求最值即可求得實(shí)數(shù)的取值范圍.
試題解析:(Ⅰ)函數(shù) ,
求導(dǎo),得,
當(dāng)時(shí), 恒成立,
當(dāng)時(shí), ,
∴ ,
∴在上恒成立,故在上單調(diào)遞減.
又, ,
曲線在[1,2]上連續(xù)不間斷,
∴由函數(shù)的零點(diǎn)存在性定理及其單調(diào)性知,唯一的∈(1,2),使,
所以,函數(shù)在上零點(diǎn)的個(gè)數(shù)為1.
(II)由(Ⅰ)知:當(dāng)時(shí), >0,當(dāng)時(shí), <0.
∴當(dāng)時(shí), =
求導(dǎo),得
由于函數(shù)在上是增函數(shù), 故在, 上恒成立.
①當(dāng)時(shí), ≥0在上恒成立,
即在上恒成立,
記, ,則,,
所以, 在上單調(diào)遞減,在上單調(diào)遞增,
∴min= 極小值= ,
故“在上恒成立”,只需 ,即.
②當(dāng)時(shí), ,
當(dāng)時(shí), 在上恒成立,
綜合①②知,當(dāng)時(shí),函數(shù)在上是增函數(shù).
故實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù)),x∈R,
(1)若f(﹣1)=0,且函數(shù)f(x)的值域?yàn)閇0,+∞),求F(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[﹣2,2]時(shí),g(x)=f(x)﹣kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(3)設(shè)mn<0,m+n>0,a>0且f(x)為偶函數(shù),判斷F(m)+F(n)能否大于零.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)P在☉O外,PC是☉O的切線,切點(diǎn)為C,直線PO與☉O相交于點(diǎn)A,B.
(1)試探索∠BCP與∠P的數(shù)量關(guān)系;
(2)若∠A=30°,則PB與PA有什么關(guān)系?
(3)∠A可能等于45°嗎?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為實(shí)數(shù),函數(shù).
(1)求的極值;
(2)當(dāng)在什么范圍內(nèi)取值時(shí),曲線與軸僅有一個(gè)交點(diǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】☉O為△ABC的內(nèi)切圓,AB=9,BC=8,CA=10,點(diǎn)D,E分別為AB,AC上的點(diǎn),且DE為☉O的切線,求△ADE的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)當(dāng)m=-1時(shí),求A∪B;
(2)若AB,求實(shí)數(shù)m的取值范圍;
(3)若A∩B=,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知D,E,F分別為△ABC的邊BC,CA,AB的中點(diǎn),記 =a , =b.則下列命題中正確的個(gè)數(shù)是( )
① = a-b;② =a+ b;③ = a+ b;④ 0.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)判斷并證明f(x)的奇偶性;
(2)求證: ;
(3)已知a,b∈(﹣1,1),且 , ,求f(a),f(b)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga (a>0,a≠1,m≠﹣1),是定義在(﹣1,1)上的奇函數(shù).
(1)求f(0)的值和實(shí)數(shù)m的值;
(2)當(dāng)m=1時(shí),判斷函數(shù)f(x)在(﹣1,1)上的單調(diào)性,并給出證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com