【題目】設(shè)函數(shù)f(x).
(1)若x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),求k的值及f(x)單調(diào)區(qū)間;
(2)設(shè)g(x)=(x+1)ln(x+1)+f(x),若g(x)在[0,+∞)上是單調(diào)增函數(shù),求實(shí)數(shù)k的取值范圍;
(3)證明:當(dāng)p>0,q>0及m<n(m,n∈N*)時(shí),.
【答案】(1)k=2,f(x)在(﹣∞,)遞增,在(,1)遞減,在(1,+∞)遞增(2)k(3)證明見解析;
【解析】
(1)求出函數(shù) 的導(dǎo)數(shù),利用求出k,令即求出函數(shù)的單調(diào)區(qū)間;
(2)求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為g′(x)=h(x)=ln(x+1)+kx2﹣x≥0恒成立,求出h(x)的導(dǎo)數(shù),通過討論k的范圍,求出函數(shù)h(x)的最小值,求出k的范圍即可;
(3)問題轉(zhuǎn)化為證明ln[1]ln[1],不妨設(shè)p>q>0,構(gòu)造函數(shù)φ(x)ln(1+ax),(x>0),其中a∈(0,1),根據(jù)函數(shù)的單調(diào)性證明即可.
解:(1)f′(x)=kx2﹣x﹣1,
∵x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),
∴f′(1)=k﹣1﹣1=0,解得:k=2,
∴f′(x)=2x2﹣x﹣1,
當(dāng)f′(x)>0,即x或x>1時(shí),f(x)遞增,
當(dāng)f′(x)<0,即x<1時(shí),f(x)遞減,
∴f(x)在(﹣∞,)遞增,在(,1)遞減,在(1,+∞)遞增;
(2)g(x)=(x+1)ln(x+1)x3x2﹣x,
g′(x)=ln(x+1)+kx2﹣x,
若g(x)在[0,+∞)上是單調(diào)增函數(shù),則g′(x)≥0對(duì)x∈[0,+∞)恒成立,
令h(x)=ln(x+1)+kx2﹣x,h′(x)2kx﹣1,
(i)若k≤0,則h′(x)<0,h(x)在[0,+∞)遞減,
∴h(x)≤h(0)=0,不合題意;
(ii)若k>0,由h′(x)=0解得:x=0,x1,
①當(dāng)0<k時(shí),0,
∴x∈(0,)時(shí),h′(x)<0,h(x)遞減,
∴h(x)≤h(0)=0,不合題意;
②當(dāng)k時(shí),0,
∴x∈[0,+∞)時(shí),h′(x)>0,h(x)遞增,
∴h(x)≥h(0)=0,即g′(x)≥0對(duì)任意x∈[0,+∞)恒成立,
綜上,k時(shí),g(x)在[0,+∞)是單調(diào)遞增函數(shù);
(3)∵1,
∴
[1]2n﹣1>[1]2m﹣1,
ln[1]ln[1],
不妨設(shè)p>q>0,則01,
構(gòu)造函數(shù)φ(x)ln(1+ax),(x>0),其中a∈(0,1),
φ′(x),
由(2)知ln(x+1)>xx2,
∴ln(ax+1)>axa2x,
∴φ′(x),
∵a∈(0,1),x>0,
∴lna<0,ax>a2xa2x,
∴φ′(x)<0,φ(x)在(0,+∞)遞減,
∵1≤m<n,∴0<2m﹣1<2n﹣1,
∴ln[1]ln[1],
故原不等式成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)院體檢中心為回饋大眾,推出優(yōu)惠活動(dòng):對(duì)首次參加體檢的人員,按200元/次收費(fèi),并注冊(cè)成為會(huì)員,對(duì)會(huì)員的后續(xù)體檢給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:
該休檢中心從所有會(huì)員中隨機(jī)選取了100位對(duì)他們?cè)诒局行膮⒓芋w檢的次數(shù)進(jìn)行統(tǒng)計(jì),得到數(shù)據(jù)如表:
假設(shè)該體檢中心為顧客體檢一次的成本費(fèi)用為150元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)已知某顧客在此體檢中心參加了3次體檢,求這3次體檢,該體檢中心的平均利潤;
(2)該體檢中心要從這100人里至少體檢3次的會(huì)員中,按體檢次數(shù)用分層抽樣的方法抽出5人,再從這5人中抽取2人,每人發(fā)放現(xiàn)金200元.用5表示體檢3次的會(huì)員所得現(xiàn)金和,求的分布列及.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若是函數(shù)的極值點(diǎn),求a的值;
(2)令,若對(duì)任意,有恒成立,求a的取值范圍;
(3)設(shè)m,n為實(shí)數(shù),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用數(shù)字0,1,2,3,4組成沒有重復(fù)數(shù)字且至少有兩個(gè)數(shù)字是偶數(shù)的四位數(shù),則這樣的四位數(shù)的個(gè)數(shù)為( )
A.64B.72C.96D.144
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|),y=f(x)的圖象關(guān)于直線x對(duì)稱,且與x軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為的等差數(shù)列,則函數(shù)f(x)的導(dǎo)函數(shù)的一個(gè)單調(diào)減區(qū)間為( )
A.[,]B.[,]C.[,]D.[,]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x-a|+|2x-1|(a∈R).
(1)當(dāng)a=-1時(shí),求f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含集合,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,半圓O的直徑AB=2,點(diǎn)C在AB的延長線上,BC=1,點(diǎn)P為半圓上異于A,B兩點(diǎn)的一個(gè)動(dòng)點(diǎn),以點(diǎn)P為直角頂點(diǎn)作等腰直角,且點(diǎn)D與圓心O分布在PC的兩側(cè),設(shè).
(1)把線段PC的長表示為的函數(shù);
(2)求四邊形ACDP面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《高中數(shù)學(xué)課程標(biāo)準(zhǔn)》(2017版)規(guī)定了數(shù)學(xué)直觀想象學(xué)科的六大核心素養(yǎng),為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對(duì)二人進(jìn)行了測驗(yàn),根據(jù)測驗(yàn)結(jié)果繪制了雷達(dá)圖(如圖,每項(xiàng)指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是(注:雷達(dá)圖,又可稱為戴布拉圖、蜘蛛網(wǎng)圖,可用于對(duì)研究對(duì)象的多維分析)( )
A.甲的直觀想象素養(yǎng)高于乙
B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)據(jù)分析素養(yǎng)
C.乙的數(shù)學(xué)建模素養(yǎng)與數(shù)學(xué)運(yùn)算素養(yǎng)一樣
D.乙的六大素養(yǎng)整體水平低于甲
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某單位的食堂中,食堂每天以10元/斤的價(jià)格購進(jìn)米粉,然后以4.4元/碗的價(jià)格出售,每碗內(nèi)含米粉0.2斤,如果當(dāng)天賣不完,剩下的米粉以2元/斤的價(jià)格賣給養(yǎng)豬場.根據(jù)以往統(tǒng)計(jì)資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂購進(jìn)了80斤米粉,以(斤)(其中)表示米粉的需求量, (元)表示利潤.
(1)估計(jì)該天食堂利潤不少于760元的概率;
(2)在直方圖的需求量分組中,以區(qū)間中間值作為該區(qū)間的需求量,以需求量落入該區(qū)間的頻率作為需求量在該區(qū)間的概率,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com