若直線x-y+1=0與圓(x-a)2+y2=2有公共點(diǎn),則實(shí)數(shù)a取值范圍是
 
考點(diǎn):直線與圓的位置關(guān)系
專題:直線與圓
分析:由題意可得,圓心到直線的距離小于或等于半徑,即
|a-0+1|
2
2
,解絕對值不等式求得實(shí)數(shù)a取值范圍.
解答: 解:由題意可得,圓心到直線的距離小于或等于半徑,
|a-0+1|
2
2
,化簡得|a+1|≤2,故有-2≤a+1≤2,求得-3≤a≤1,
故答案為:[-3,1].
點(diǎn)評:本題主要考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,四條側(cè)棱長均相等且BD交AC于點(diǎn)O.
(1)求證:AB∥平面PCD;
(2)求證:PO⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,角A,B,C的對邊分別是a,b,c,且
3
c=2asinC.
(1)確定角A的大;
(2)若a=
7
,且b+c=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了參加全運(yùn)會(huì),省運(yùn)動(dòng)管理中心對自行車運(yùn)動(dòng)員甲、乙兩人在相同的條件下進(jìn)行了6次測試,測得他們的最大速度的數(shù)據(jù)如表所示:
27 38 30 37 35 31
33 29 38 34 28 36
請用平均數(shù)和方差來分析甲、乙兩人誰參加這項(xiàng)重大比賽更合適.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=
4
anan+1
,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一次數(shù)學(xué)測驗(yàn)后,學(xué)習(xí)委員小明對選做題的選題情況進(jìn)行了統(tǒng)計(jì),如表:(單位:人)
幾何證明選講 坐標(biāo)系與參數(shù)方程 不等式選講 合計(jì)
男同學(xué) 12 4 6 22
女同學(xué) 0 8 12 20
合計(jì) 12 12 18 42
(Ⅰ)在統(tǒng)計(jì)結(jié)果中,如果不考慮性別因素,按分層抽樣的方法從選做不同選做題的同學(xué)中隨機(jī)選出7名同學(xué)進(jìn)行座談.已知學(xué)習(xí)委員小明和兩名數(shù)學(xué)科代表三人都在選做《不等式選講》的同學(xué)中.求在這名班級學(xué)習(xí)委員被選中的條件下,兩名數(shù)學(xué)科代表也被選中的概率;
(Ⅱ)在統(tǒng)計(jì)結(jié)果中,如果把《幾何證明選講》和《坐標(biāo)系與參數(shù)方程》稱為幾何類,把《不等式選講》稱為代數(shù)類,我們可以得到如下2×2列聯(lián)表:(單位:人)
幾何類 代數(shù)類 總計(jì)
男同學(xué) 16 6 22
女同學(xué) 8 12 20
總計(jì) 24 18 42
據(jù)此判斷是否有95%的把握認(rèn)為選做“幾何類”或“代數(shù)類”與性別有關(guān)?
下面臨界值表僅供參考:
P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
ax3+(b-
a-3
2
)x2+3x,其中a>0,b∈R.
(Ⅰ)當(dāng)b=-3時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=3,且b<0時(shí),
(i)若f(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2),求證:f(x1)<1;
(ii)若對任意的x∈[0,t],都有-1≤f(x)≤16成立,求正實(shí)數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心在直線2x+y=0上,且圓C與直線x+y=1切于點(diǎn)M(2,-1),求圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)f(x)=
2x+1 ,x<0
x3  ,0≤x≤1
x
 ,x>1
,編寫程序求函數(shù)值(只寫程序)
(2)畫出程序框圖:求和:
2
1
+
3
2
+
4
3
+
5
4
+…+
100
99
(只畫程序框圖,循環(huán)體不對不得分)

查看答案和解析>>

同步練習(xí)冊答案