如圖,在三棱柱中,側(cè)棱底面,的中點(diǎn),,.

(1)求證:平面;
(2)求四棱錐的體積.

(1)見解析;(2).

解析試題分析:(1)欲證平面,根據(jù)線面平行的判定定理可知只需證與平面內(nèi)一直線平行,連接,設(shè)相交于點(diǎn)O,連接,根據(jù)中位線定理可知,?平面,?平面,滿足定理所需條件;
(2)根據(jù)面面垂直的判定定理可知平面⊥平面,作,垂足為E,則⊥平面,然后求出棱長,最后根據(jù)四棱錐,的體積,即可求四棱錐的體積.

(1)證明:連接,設(shè)相交于點(diǎn),連接,
∵ 四邊形是平行四邊形,
∴點(diǎn)的中點(diǎn).                   
的中點(diǎn),
為△的中位線,
.                  
平面,平面,
平面.            
(2)∵平面,平面,
∴ 平面平面,且平面平面.
,垂足為,則平面,
,
在Rt△中,,
∴四棱錐的體積 
.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知在空間四邊形ABCD中,E,F(xiàn)分別是AB,AD的中點(diǎn),G,H分別是BC,CD上的點(diǎn),且=2.求證:直線EG,F(xiàn)H,AC相交于一點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐中,底面為平行四邊形,,是正三角形,平面平面
(1)求證:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2011•湖北)如圖,已知正三棱柱ABC=A1B1C1的各棱長都是4,E是BC的中點(diǎn),動點(diǎn)F在側(cè)棱CC1上,且不與點(diǎn)C重合.
(1)當(dāng)CF=1時,求證:EF⊥A1C;
(2)設(shè)二面角C﹣AF﹣E的大小為θ,求tanθ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,平面ABCD,AD//BC,AC,,點(diǎn)M在線段PD上.

(1)求證:平面PAC;
(2)若二面角M-AC-D的大小為,試確定點(diǎn)M的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐P -ABCD的底面是矩形,側(cè)面PAD是正三角形,且側(cè)面PAD⊥底面ABCD,E 為側(cè)棱PD的中點(diǎn)。
(1)證明:PB//平面EAC;
(2)若AD="2AB=2," 求直線PB與平面ABCD所成角的正切值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直四棱柱中,,,,,E為CD上一點(diǎn),,

(1)證明:BE⊥平面;
(2)求點(diǎn)到平面的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知四棱錐,底面為菱形,
平面,分別是的中點(diǎn).
(1)證明:;
(2)若上的動點(diǎn),與平面所成最大角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖在四棱錐中,底面是菱形,,平面平面,的中點(diǎn),是棱上一點(diǎn),且.

(1)求證:平面;
(2)證明:∥平面
(3)求二面角的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案