【題目】已知數(shù)列滿足 .
(1)證明:當時,;
(2)證明: ();
(3)證明:為自然常數(shù).
【答案】(1)證明見解析;(2)證明見解析;(3)證明見解析.
【解析】
(1)用數(shù)學歸納法證明,先證成立,再假設(shè)當時結(jié)論成立,即,再證當,成立,這一步需要用到這一假設(shè)
(2)先觀察證明的恒等式,發(fā)覺右側(cè)出現(xiàn)了裂項的基本形式,故可考慮將式子作如下變形處理,通過移項可得,再采用疊加法即可求得
由遞推公式和(1)的結(jié)論有
變形得,兩邊同取對數(shù)得,再利用導數(shù)公式,可得
即,再采用累加法通過變形最后即可得到
(1)(用數(shù)學歸納法證明)
①當時,,
所以結(jié)論成立;
②假設(shè)當時結(jié)論成立,即.
則當時
所以時,結(jié)論成立.
由①②可知,當時,成立
(2)由題意得
所以
所以,
,
,
……
,
以上各式兩邊分別相加可得,
又,所以
.
(3)由題意得,
∴,
∴,(利用了導數(shù)公式的性質(zhì))
∴,
由累加法得
,
所以,
所以,
故,
所以為自然常數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】某市調(diào)硏機構(gòu)對該市工薪階層對“樓市限購令”態(tài)度進行調(diào)查,抽調(diào)了50名市民,他們月收入頻數(shù)分布表和對“樓市限購令”贊成人數(shù)如下表:
月收入(單位:百元) | ||||||
頻數(shù) | 5 | 10 | 5 | 5 | ||
頻率 | 0.1 | 0.2 | 0.1 | 0.1 | ||
贊成人數(shù) | 4 | 8 | 12 | 5 | 2 | 1 |
(1)若所抽調(diào)的50名市民中,收入在的有15名,求,,的值,并完成頻率分布直方圖.
(2)若從收入(單位:百元)在的被調(diào)查者中隨機選取2人進行追蹤調(diào)查,選中的2人中恰有人贊成“樓市限購令”,求的分布列與數(shù)學期望.
(3)從月收入頻率分布表的6組市民中分別隨機抽取3名市民,恰有一組的3名市民都不贊成“樓市限購令”,根據(jù)表格數(shù)據(jù),判斷這3名市民來自哪組的可能性最大?請直接寫出你的判斷結(jié)果.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是異面直線,是空間一定點,下列命題中正確的個數(shù)為( )
①過點總可以作一條直線與都垂直;
②過點總可以作一個平面與都平行;
③過點總可以作一條直線與之一垂直于與另一條平行;
④過點總可以作一個平面與 之一垂直于與另一條平行;
⑤過點總可以作一個平面與直線同時垂直
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2021年我省將實施新高考,新高考“依據(jù)統(tǒng)一高考成績、高中學業(yè)水平考試成績,參考高中學生綜合素質(zhì)評價信息”進行人才選拔。我校2018級高一年級一個學習興趣小組進行社會實踐活動,決定對某商場銷售的商品A進行市場銷售量調(diào)研,通過對該商品一個階段的調(diào)研得知,發(fā)現(xiàn)該商品每日的銷售量(單位:百件)與銷售價格(元/件)近似滿足關(guān)系式,其中為常數(shù)已知銷售價格為3元/件時,每日可售出該商品10百件。
(1)求函數(shù)的解析式;
(2)若該商品A的成本為2元/件,根據(jù)調(diào)研結(jié)果請你試確定該商品銷售價格的值,使該商場每日銷售該商品所獲得的利潤(單位:百元)最大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐中,底面為菱形,,是邊長為2的正三角形,平面⊥平面,為的中點,為的中點.
(1)求證:平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市環(huán)保部門為了讓全市居民認識到冬天燒煤取暖對空氣數(shù)值的影響,進而喚醒全市人民的環(huán)保節(jié)能意識。對該市取暖季燒煤天數(shù)與空氣數(shù)值不合格的天數(shù)進行統(tǒng)計分析,得出下表數(shù)據(jù):
(天) | 9 | 8 | 7 | 5 | 4 |
(天) | 7 | 6 | 5 | 3 | 2 |
(1)以統(tǒng)計數(shù)據(jù)為依據(jù),求出關(guān)于的線性回歸方程;
(2)根據(jù)(1)求出的線性回歸方程,預(yù)測該市燒煤取暖的天數(shù)為20時空氣數(shù)值不合格的天數(shù).
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲袋中裝有2個白球,3個黑球,乙袋中裝有1個白球,2個黑球,這些球除顏色外完全相同.
(1)從兩袋中各取1個球,記事件:取出的2個球均為白球,求;
(2)每次從甲、乙兩袋中各取2個球,若取出的白球不少于2個就獲獎(每次取完后將球放回原袋),共取了3次,記獲獎次數(shù)為,寫出的分布列并求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三角形面積為S=(a+b+c)r,a,b,c為三角形三邊長,r為三角形內(nèi)切圓半徑,利用類比推理,可以得出四面體的體積為 ( )
A. V=abc B. V=Sh
C. V=(ab+bc+ac)·h(h為四面體的高) D. V=(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分別為四面體四個面的面積,r為四面體內(nèi)切球的半徑,設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個面的距離都是r)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com