【題目】已知函數(shù)y=f(x),若在定義域內(nèi)存在x0 , 使得f(﹣x0)=﹣f(x0)成立,則稱x0為函數(shù)y=f(x)的局部對稱點.
(1)若a、b∈R且a≠0,證明:函數(shù)f(x)=ax2+bx﹣a必有局部對稱點;
(2)若函數(shù)f(x)=2x+c在定義域[﹣1,2]內(nèi)有局部對稱點,求實數(shù)c的取值范圍;
(3)若函數(shù)f(x)=4x﹣m2x+1+m2﹣3在R上有局部對稱點,求實數(shù)m的取值范圍.
【答案】
(1)證明:由f(x)=ax2+bx﹣a得f(﹣x)=ax2﹣bx﹣a
代入f(﹣x)+f(x)=0得,(ax2+bx﹣a)+(ax2﹣bx﹣a)=0,
得到關(guān)于x的方程ax2﹣a=0(a≠0),
其中△=4a2,由于a∈R且a≠0,所以△>0恒成立
所以函數(shù)f(x)=ax2+bx﹣a(a≠0)必有局部對稱點
(2)證明:方程2x+2﹣x+2c=0在區(qū)間[﹣1,2]上有解,于是﹣2c=2x+2﹣x
設(shè)t=2x(﹣1≤x≤2), , 其中
所以
(3)證明:f(﹣x)=4﹣x﹣m2﹣x+1+m2﹣3,
由于f(﹣x)+f(x)=0,所以4﹣x﹣m2﹣x+1+m2﹣3=﹣(4x﹣m2x+1+m2﹣3)
于是(4x+4﹣x)﹣2m(2x+2﹣x)+2(m2﹣3)=0(*)在R上有解
令2x+2﹣x=t(t≥2),則4x+4﹣x=t2﹣2,
所以方程(*)變?yōu)閠2﹣2mt+2m2﹣8=0在區(qū)間[2,+∞)內(nèi)有解,需滿足條件:
即 ,
化簡得
【解析】(1)根據(jù)局部對稱點的定義,結(jié)合已知中二次函數(shù)的圖象和性質(zhì),可證明得結(jié)論;(2)若函數(shù)f(x)=2x+c在定義域[﹣1,2]內(nèi)有局部對稱點,則方程2x+2﹣x+2c=0在區(qū)間[﹣1,2]上有解,解得實數(shù)c的取值范圍;(3)若函數(shù)f(x)=4x﹣m2x+1+m2﹣3在R上有局部對稱點,則方程(4x+4﹣x)﹣2m(2x+2﹣x)+2(m2﹣3)=0(*)在R上有解,解得實數(shù)m的取值范圍.
【考點精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識點,需要掌握當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)是滿足f(x)+f(﹣x)=0,在(﹣∞,0)上 ,且f(5)=0,則使f(x)<0的x取值范圍是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線C的中心在原點,右焦點為 ,漸近線方程為 .
(1)求雙曲線C的方程;
(2)設(shè)直線l:y=kx+1與雙曲線C交于A、B兩點,問:當k為何值時,以AB為直徑的圓過原點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】小張在淘寶網(wǎng)上開一家商店,他以10元每條的價格購進某品牌積壓圍巾2000條.定價前,小張先搜索了淘寶網(wǎng)上的其它網(wǎng)店,發(fā)現(xiàn):A商店以30元每條的價格銷售,平均每日銷售量為10條;B商店以25元每條的價格銷售,平均每日銷售量為20條.假定這種圍巾的銷售量t(條)是售價x(元)(x∈Z+)的一次函數(shù),且各個商店間的售價、銷售量等方面不會互相影響.
(1)試寫出圍巾銷售每日的毛利潤y(元)關(guān)于售價x(元)(x∈Z+)的函數(shù)關(guān)系式(不必寫出定義域),并幫助小張定價,使得每日的毛利潤最高(每日的毛利潤為每日賣出商品的進貨價與銷售價之間的差價);
(2)考慮到這批圍巾的管理、倉儲等費用為200元/天(只要圍巾沒有售完,均須支付200元/天,管理、倉儲等費用與圍巾數(shù)量無關(guān)),試問小張應(yīng)該如何定價,使這批圍巾的總利潤最高(總利潤=總毛利潤﹣總管理、倉儲等費用)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有(n≥2,n∈N*)個給定的不同的數(shù)隨機排成一個下圖所示的三角形數(shù)陣:
設(shè)Mk是第k行中的最大數(shù),其中1≤k≤n,k∈N*.記M1<M2<…<Mn的概率為pn.
(1)求p2的值;
(2)證明:pn>.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,BC交⊙O于點E.
(1)若D為AC的中點,證明:DE是⊙O的切線;
(2)若OA= CE,求∠ACB的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com