我們用部分自然數(shù)構(gòu)造如下的數(shù)表:用aij(i≥j)表示第i行第j個數(shù)(i、j為正整數(shù)),使ail=aii=i ;每行中的其余各數(shù)分別等于其“肩膀”上的兩個數(shù)之和(第一、二行除外,如圖),設(shè)第n(n為正整數(shù))行中各數(shù)之和為bn

   (1)試寫出b2一2b1;,b3-2b2,b4-2b3,b5-2b4,并推測bn+1和bn的關(guān)系(無需證明);

   (2)證明數(shù)列{bn+2}是等比數(shù)列,并求數(shù)列{bn}的通項公式bn;

   (3)數(shù)列{ bn}中是否存在不同的三項bp,bq,br(p,q,r為正整數(shù))恰好成等差數(shù)列?若存在求出P,q,r的關(guān)系;若不存在,請說明理由.

 


(1)bn+1-2 bn=2(2)bn =3×2n-1-2(3)不存在


解析:

(1)bl=1,;b2=4;b3=10;b4=22;b5=46:

可見:b2-2 bl=2;b3-2 b2=2;b4-2 b3=2;b5-2 b4=2

  猜測:bn+1-2 bn=2 (或bn+1=2 bn+2或bn+1- bn=3×2n-1)

   (2)由(1)

    所以{bn+2},是以b1+2=3為首項,2為公比的等比數(shù)列,

∴ bn+2=3×2n-1  ,即bn =3×2n-1-2。。-

(注:若考慮,且不討論n=1,扣1分)

   (3)若數(shù)列{ bn }中存在不同的三項bp, bq , br(p,q,r∈N)恰好成等差數(shù)列,不妨設(shè)p>q>r,顯然,{ bn }是遞增數(shù)列,則2 bq= bp, + br

即2×(3×2q-1-2)=(3×2p-1-2)+(3×2r-1-2),于是2×2q-r=2q-r+1

    由p,q,r∈N且p>q>r知,q-r≥1,p-r≥2

∴等式的左邊為偶數(shù),右邊為奇數(shù),不成立,故數(shù)列{bn}中不存在不同的三項bp,bq,br(p,q,r∈N)恰好成等差數(shù)列--

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)我們用部分自然數(shù)構(gòu)造如下的數(shù)表:用aij(i≥j)表示第i行第j個數(shù)(i、j為正整數(shù)),使ai1=aii=i;每行中的其余各數(shù)分別等于其“肩膀”上的兩個數(shù)之和(第一、二行除外,如圖),設(shè)第n(n為正整數(shù))行中各數(shù)之和為bn
(Ⅰ)試寫出b2-2b1,b3-2b2,b4-2b3,b5-2b4,并推測bn+1和bn的關(guān)系(無需證明);
(Ⅱ)證明數(shù)列{bn+2}是等比數(shù)列,并求數(shù)列{bn}的通項公式bn
(Ⅲ)數(shù)列{bn}中是否存在不同的三項bp,bq,br(p、q、r為正整數(shù))恰好成等差數(shù)列?若存在,求出p、q、r的關(guān)系;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年靜安區(qū)質(zhì)檢文)我們用部分自然數(shù)構(gòu)造如下的數(shù)表:用表示第行第個數(shù)(為正整數(shù)),使;每行中的其余各數(shù)分別等于其“肩膀”上的兩個數(shù)之和(第一、二行除外,如圖),設(shè)第為正整數(shù))行中各數(shù)之和為.

(1)試寫出,并推測的關(guān)系(無需證明);

(2)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;

(3)數(shù)列中是否存在不同的三項為正整數(shù))恰好成等差數(shù)列?若存在,求出的關(guān)系;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年萊陽一中期末文)(12分)

我們用部分自然數(shù)構(gòu)造如下的數(shù)表:用表示第行第個數(shù)為整數(shù),使;每行中的其余各數(shù)分別等于其‘肩膀”上的兩個數(shù)之和(第一、二行除外,如圖),設(shè)第 (為正整數(shù))行中各數(shù)之和為。

(1)              試寫出并推測的關(guān)系(無需證明);

(2)              證明數(shù)列是等比數(shù)列,并求數(shù)列的通項公式

(3)              數(shù)列中是否存在不同的三項恰好成等差數(shù)列?若存在求出的關(guān)系;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省蘇州市吳江市松陵高級中學(xué)高三(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

我們用部分自然數(shù)構(gòu)造如下的數(shù)表:用aij(i≥j)表示第i行第j個數(shù)(i、j為正整數(shù)),使ai1=aii=i;每行中的其余各數(shù)分別等于其“肩膀”上的兩個數(shù)之和(第一、二行除外,如圖),設(shè)第n(n為正整數(shù))行中各數(shù)之和為bn
(Ⅰ)試寫出b2-2b1,b3-2b2,b4-2b3,b5-2b4,并推測bn+1和bn的關(guān)系(無需證明);
(Ⅱ)證明數(shù)列{bn+2}是等比數(shù)列,并求數(shù)列{bn}的通項公式bn;
(Ⅲ)數(shù)列{bn}中是否存在不同的三項bp,bq,br(p、q、r為正整數(shù))恰好成等差數(shù)列?若存在,求出p、q、r的關(guān)系;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案