(本題滿(mǎn)分16分)本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分,
第3小題滿(mǎn)分6分.
已知橢圓過(guò)點(diǎn),兩焦點(diǎn)為、,是坐標(biāo)原點(diǎn),不經(jīng)過(guò)原點(diǎn)的直線(xiàn)與橢圓交于兩不同點(diǎn)、.
(1)求橢圓C的方程;
(2) 當(dāng)時(shí),求面積的最大值;
(3) 若直線(xiàn)、、的斜率依次成等比數(shù)列,求直線(xiàn)的斜率.
(1),(2)1,(3).
解析試題分析:(1)求橢圓標(biāo)準(zhǔn)方程,通常利用待定系數(shù)法求解,即只需兩個(gè)獨(dú)立條件解出a,b即可. 由及,解得所以橢圓的方程為.(2)解幾中面積問(wèn)題,通常轉(zhuǎn)化為點(diǎn)到直線(xiàn)距離.
當(dāng)且僅當(dāng)時(shí),等號(hào)成立 所以面積的最大值為.(3)涉及斜率問(wèn)題,通常轉(zhuǎn)化為對(duì)應(yīng)坐標(biāo)的運(yùn)算. 由消去得:,,,因?yàn)橹本(xiàn)的斜率依次成等比數(shù)列,所以,故
試題解析:[解] (1)由題意得,可設(shè)橢圓方程為 2分
則,解得所以橢圓的方程為. 4分
(2)消去得:
則 6分
設(shè)為點(diǎn)到直線(xiàn)的距離,則 8分
當(dāng)且僅當(dāng)時(shí),等號(hào)成立 所以面積的最大值為. 10分
(2)消去得: 12分
則
故 14分
因?yàn)橹本(xiàn)的斜率依次成等比數(shù)列
所以
,由于故 16分
考點(diǎn):橢圓方程,直線(xiàn)與橢圓位置關(guān)系
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,點(diǎn)到點(diǎn)的距離比它到軸的距離多1,記點(diǎn)的軌跡為.
(1)求軌跡為的方程
(2)設(shè)斜率為的直線(xiàn)過(guò)定點(diǎn),求直線(xiàn)與軌跡恰好有一個(gè)公共點(diǎn),兩個(gè)公共點(diǎn),三個(gè)公共點(diǎn)時(shí)的相應(yīng)取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
過(guò)拋物線(xiàn)C:上的點(diǎn)M分別向C的準(zhǔn)線(xiàn)和x軸作垂線(xiàn),兩條垂線(xiàn)及C的準(zhǔn)線(xiàn)和x軸圍成邊長(zhǎng)為4的正方形,點(diǎn)M在第一象限.
(1)求拋物線(xiàn)C的方程及點(diǎn)M的坐標(biāo);
(2)過(guò)點(diǎn)M作傾斜角互補(bǔ)的兩條直線(xiàn)分別與拋物線(xiàn)C交于A,B兩點(diǎn),如果點(diǎn)M在直線(xiàn)AB的上方,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線(xiàn)的方程為,直線(xiàn)的方程為,點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)在拋物線(xiàn)上.
(1)求拋物線(xiàn)的方程;
(2)已知,求過(guò)點(diǎn)及拋物線(xiàn)與軸兩個(gè)交點(diǎn)的圓的方程;
(3)已知,點(diǎn)是拋物線(xiàn)的焦點(diǎn),是拋物線(xiàn)上的動(dòng)點(diǎn),求的最小值及此時(shí)點(diǎn)的坐標(biāo);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓的長(zhǎng)軸長(zhǎng)為,點(diǎn)、、為橢圓上的三個(gè)點(diǎn),為橢圓的右端點(diǎn),過(guò)中心,且,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)、是橢圓上位于直線(xiàn)同側(cè)的兩個(gè)動(dòng)點(diǎn)(異于、),且滿(mǎn)足,試討論直線(xiàn)與直線(xiàn)斜率之間的關(guān)系,并求證直線(xiàn)的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2011•山東)在平面直角坐標(biāo)系xOy中,已知橢圓.如圖所示,斜率為k(k>0)且不過(guò)原點(diǎn)的直線(xiàn)l交橢圓C于A,B兩點(diǎn),線(xiàn)段AB的中點(diǎn)為E,射線(xiàn)OE交橢圓C于點(diǎn)G,交直線(xiàn)x=﹣3于點(diǎn)D(﹣3,m).
(1)求m2+k2的最小值;
(2)若|OG|2=|OD|?|OE|,
(i)求證:直線(xiàn)l過(guò)定點(diǎn);
(ii)試問(wèn)點(diǎn)B,G能否關(guān)于x軸對(duì)稱(chēng)?若能,求出此時(shí)△ABG的外接圓方程;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定點(diǎn),過(guò)點(diǎn)F且與直線(xiàn)相切的動(dòng)圓圓心為點(diǎn)M,記點(diǎn)M的軌跡為曲線(xiàn)E.
(1)求曲線(xiàn)E的方程;
(2)若點(diǎn)A的坐標(biāo)為,與曲線(xiàn)E相交于B,C兩點(diǎn),直線(xiàn)AB,AC分別交直線(xiàn)于點(diǎn)S,T.試判斷以線(xiàn)段ST為直徑的圓是否恒過(guò)兩個(gè)定點(diǎn)?若是,求這兩個(gè)定點(diǎn)的坐標(biāo);若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2013•浙江)已知拋物線(xiàn)C的頂點(diǎn)為O(0,0),焦點(diǎn)F(0,1)
(Ⅰ)求拋物線(xiàn)C的方程;
(Ⅱ)過(guò)F作直線(xiàn)交拋物線(xiàn)于A、B兩點(diǎn).若直線(xiàn)OA、OB分別交直線(xiàn)l:y=x﹣2于M、N兩點(diǎn),求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,如圖,已知橢圓E:的左、右頂點(diǎn)分別為、,上、下頂點(diǎn)分別為、.設(shè)直線(xiàn)的傾斜角的正弦值為,圓與以線(xiàn)段為直徑的圓關(guān)于直線(xiàn)對(duì)稱(chēng).
(1)求橢圓E的離心率;
(2)判斷直線(xiàn)與圓的位置關(guān)系,并說(shuō)明理由;
(3)若圓的面積為,求圓的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com