【題目】已知正方形和矩形所在的平面互相垂直,,點在線段上.

(Ⅰ)若的中點,求證:平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)證明:存在點,使得平面,并求的值.

【答案】(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)詳見解析.

【解析】

(Ⅰ)設(shè),根據(jù)平面幾何知識得為平行四邊形,即得,再根據(jù)線面平行判定定理得結(jié)果,(Ⅱ)建立空間直角坐標系,設(shè)立各點坐標,利用方程組解得平面的一個法向量,根據(jù)向量數(shù)量積得法向量夾角,最后根據(jù)二面角與向量夾角關(guān)系得結(jié)果,(Ⅲ)設(shè),根據(jù)題意得與平面法向量,列式可得M坐標,代入即得的值.

(Ⅰ)設(shè),連結(jié)

因為正方形,所以中點

又矩形,的中點

所以

所以為平行四邊形

所以

平面,平面

所以平面

(Ⅱ)以為原點,分別以軸建立坐標系

設(shè)平面的法向量為,

易知平面的法向量

由圖可知二面角為銳角

所以二面角的余弦值為

(Ⅲ)設(shè),則

平面,則,即

所以解得所以

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,其中,點是橢圓的右頂點,射線與橢圓的交點為.

1)求點的坐標;

2)設(shè)橢圓的長半軸、短半軸的長分別為、,當的值在區(qū)間中變化時,求的取值范圍;

3)在(2)的條件下,以為焦點,為頂點且開口方向向左的拋物線過點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,對于點,若函數(shù)滿足:,都有,就稱這個函數(shù)是點的“限定函數(shù)”.以下函數(shù):①,②,③,④,其中是原點的“限定函數(shù)”的序號是______.已知點在函數(shù)的圖象上,若函數(shù)是點的“限定函數(shù)”,則的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場營銷人員進行某商品的市場營銷調(diào)查時發(fā)現(xiàn),每回饋消費者一定的點數(shù),該商品每天的銷量就會發(fā)生一定的變化,經(jīng)過試點統(tǒng)計得到以下表:

反饋點數(shù)t

1

2

3

4

5

銷量(百件)/天

0.5

0.6

1

1.4

1.7

(Ⅰ)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合當?shù)卦撋唐蜂N量(千件)與返還點數(shù)之間的相關(guān)關(guān)系.試預(yù)測若返回6個點時該商品每天的銷量;

(Ⅱ)若節(jié)日期間營銷部對商品進行新一輪調(diào)整.已知某地擬購買該商品的消費群體十分龐大,經(jīng)營銷調(diào)研機構(gòu)對其中的200名消費者的返點數(shù)額的心理預(yù)期值進行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:

返還點數(shù)預(yù)期值區(qū)間

(百分比)

[1,3)

[3,5)

[5,7)

[7,9)

[9,11)

[11,13)

頻數(shù)

20

60

60

30

20

10

將對返點點數(shù)的心理預(yù)期值在的消費者分別定義為“欲望緊縮型”消費者和“欲望膨脹型”消費者,現(xiàn)采用分層抽樣的方法從位于這兩個區(qū)間的30名消費者中隨機抽取6名,再從這6人中隨機抽取3名進行跟蹤調(diào)查,求抽出的3人中至少有1名“欲望膨脹型”消費者的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程的曲線是圓C,

(1)若直線l與圓C相交于M、N兩點,且O為坐標原點),求實數(shù)m的值;

2)當時,設(shè)T為直線n上的動點,過T作圓C的兩條切線TG、TH,切點分別為G、H,求四邊形TGCH而積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知空間幾何體中,均為邊長為的等邊三角形,為腰長為的等腰三角形,平面平面,平面平面.

(1)試在平面內(nèi)作一條直線,使直線上任意一點的連線均與平面平行,并給出詳細證明

(2)求點到平面的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點F是拋物線Cy22pxp0)的焦點,若點Px0,4)在拋物線C上,且.

1)求拋物線C的方程;

2)動直線lxmy+1mR)與拋物線C相交于A,B兩點,問:在x軸上是否存在定點Dt,0)(其中t≠0),使得kAD+kBD0,(kADkBD分別為直線AD,BD的斜率)若存在,求出點D的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形ABC為直角三角形,且,E,F分別為AB,AC的中點,G,H分別為BEAF的中點(如圖一),現(xiàn)在沿EF將三角形AEF折起至,連接,GH(如圖二).

1)證明:平面;

2)當平面平面EFCB時,求異面直線GHEF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱, 的中點.

1證明 平面

2, ,求點到平面的距離.

查看答案和解析>>

同步練習(xí)冊答案