【題目】已知函數(shù)在區(qū)間上有最大值和最小值.
(1)求的值;
(2)設(shè),
證明:對(duì)任意實(shí)數(shù),函數(shù)的圖象與直線最多只有一個(gè)交點(diǎn);
(3)設(shè),是否存在實(shí)數(shù)m和nm<n,使的定義域和值域分別為,如果存在,求出m和n的值.若不存在,請(qǐng)說(shuō)明理由。
【答案】(1);(2)見(jiàn)解析;(3)
【解析】
(1)由題意得到函數(shù)在區(qū)間上單調(diào)遞增,結(jié)合題意可求得.(2)由得,構(gòu)造函數(shù),可證明函數(shù)單調(diào)遞增,故得結(jié)論成立.(3)分析條件可得函數(shù)在上單調(diào)遞增,于是可得到,于是得為方程的兩個(gè)不等實(shí)根,解方程可得.
(1)由題意得,
∴函數(shù)圖象的對(duì)稱軸為,
∴函數(shù)在區(qū)間上單調(diào)遞增,
由題得,
解得.
(2)證明:由(1)知,
∴,
令,
∴,
令.
設(shè),則
∵,
∴,
∴,
∴,
∴,即,
∴函數(shù)為上的增函數(shù),
∴對(duì)任意實(shí)數(shù),函數(shù)的圖象與直線最多只有一個(gè)交點(diǎn).
(3)由題意知,對(duì)稱軸為,
∴.
假設(shè)存在實(shí)數(shù),使得當(dāng)時(shí),的值域?yàn)?/span>,則,
∴,
∴函數(shù)在上單調(diào)遞增,
∴,
則為方程的兩個(gè)不等實(shí)根,
由得,
解得,.經(jīng)檢驗(yàn)得滿足條件.
故存在,使得的定義域和值域分別為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)P1,P2,…,P6為單位圓上逆時(shí)針均勻分布的六個(gè)點(diǎn).現(xiàn)任選其中三個(gè)不同點(diǎn)構(gòu)成一個(gè)三角形,記該三角形的面積為隨機(jī)變量S.
(1)求S=的概率;
(2)求S的分布列及數(shù)學(xué)期望E(S).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣lnx(a∈R)
(1)當(dāng)a=1時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若x∈(0,1],|f(x)|≥1恒成立,求a的取值范圍;
(3)若a= ,證明:ex﹣1f(x)≥x.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣lnx(a∈R)
(1)當(dāng)a=1時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若x∈(0,1],|f(x)|≥1恒成立,求a的取值范圍;
(3)若a= ,證明:ex﹣1f(x)≥x.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高考復(fù)習(xí)經(jīng)過(guò)二輪“見(jiàn)多識(shí)廣”之后,為了研究考前“限時(shí)搶分”強(qiáng)化訓(xùn)練次數(shù)與答題正確率﹪的關(guān)系,對(duì)某校高三某班學(xué)生進(jìn)行了關(guān)注統(tǒng)計(jì),得到如下數(shù)據(jù):
1 | 2 | 3 | 4 | |
20 | 30 | 50 | 60 |
(1)求關(guān)于的線性回歸方程,并預(yù)測(cè)答題正確率是100﹪的強(qiáng)化訓(xùn)練次數(shù);
(2)若用表示統(tǒng)計(jì)數(shù)據(jù)的“強(qiáng)化均值”(精確到整數(shù)),若“強(qiáng)化均值”的標(biāo)準(zhǔn)差在區(qū)間內(nèi),則強(qiáng)化訓(xùn)練有效,請(qǐng)問(wèn)這個(gè)班的強(qiáng)化訓(xùn)練是否有效?
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,=- ,
樣本數(shù)據(jù)的標(biāo)準(zhǔn)差為:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sinxcosx﹣ x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)當(dāng)x∈[0, ]時(shí),求f(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)準(zhǔn)備在開(kāi)學(xué)時(shí)舉行一次大學(xué)一年級(jí)學(xué)生座談會(huì),擬邀請(qǐng)20名來(lái)自本校機(jī)械工程學(xué)院、海洋學(xué)院、醫(yī)學(xué)院、經(jīng)濟(jì)學(xué)院的學(xué)生參加,各學(xué)院邀請(qǐng)的學(xué)生數(shù)如下表所示:
學(xué)院 | 機(jī)械工程學(xué)院 | 海洋學(xué)院 | 醫(yī)學(xué)院 | 經(jīng)濟(jì)學(xué)院 |
人數(shù) | 4 | 6 | 4 | 6 |
(Ⅰ)從這20名學(xué)生中隨機(jī)選出3名學(xué)生發(fā)言,求這3名學(xué)生中任意兩個(gè)均不屬于同一學(xué)院的概率;
(Ⅱ)從這20名學(xué)生中隨機(jī)選出3名學(xué)生發(fā)言,設(shè)來(lái)自醫(yī)學(xué)院的學(xué)生數(shù)為ξ,求隨機(jī)變量ξ的概率分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程有4個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)0<a<1,已知函數(shù)f(x)= ,若對(duì)任意b∈(0, ),函數(shù)g(x)=f(x)﹣b至少有兩個(gè)零點(diǎn),則a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com