【題目】甲、乙兩人各自獨立地進行射擊比賽,甲、乙兩人各射擊一次,擊中目標的概率分別是 ,假設每次射擊是否擊中目標相互之間沒有影響.
(1)求甲射擊3次,至少有1次未擊中目標的概率;
(2)求兩人各射擊3次,甲恰好擊中目標2次且乙恰好擊中目標1次的概率.

【答案】
(1)解:記“甲連續(xù)射擊3次至少有1次未擊中目標”為事件A1,

由題意,射擊3次,相當于3次獨立重復試驗,

故P(A1)=1﹣P( )=1﹣( 3= .…


(2)解:記“甲射擊3次,恰有2次擊中目標”為事件A2,

“乙射擊3次,恰有1次擊中目標”為事件B2,

則P(A2)=

P(B2)=

由于甲、乙射擊相互獨立,

故P(A2B2)=P(A2)P(B2)= =


【解析】(1)記“甲連續(xù)射擊3次至少有1次未擊中目標”為事件A1 , 由題意,射擊3次,相當于3次獨立重復試驗,由此能求出甲射擊3次,至少有1次未擊中目標的概率.(2)記“甲射擊3次,恰有2次擊中目標”為事件A2 , “乙射擊3次,恰有1次擊中目標”為事件B2 , 甲、乙射擊相互獨立,由此能求出兩人各射擊3次,甲恰好擊中目標2次且乙恰好擊中目標1次的概率.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標值衡量,質(zhì)量指標值越大表明質(zhì)量越好,且質(zhì)量指標值大于或等于102的產(chǎn)品為優(yōu)質(zhì)品.現(xiàn)用兩種新配方(分別稱為A配方和B配方)做試驗,各生產(chǎn)了100件這種產(chǎn)品,并測量了每件產(chǎn)品的質(zhì)量指標值,得到下面試驗結(jié)果:
A配方的頻數(shù)分布表

指標值分組

[90,94)

[94,98)

[98,102)

[102,106)

[106,110]

頻數(shù)

8

20

42

22

8

B配方的頻數(shù)分布表

指標值分組

[90,94)

[94,98)

[98,102)

[102,106)

[106,110]

頻數(shù)

4

12

42

32

10


(1)分別估計用A配方,B配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;
(2)已知用B配方生產(chǎn)的一件產(chǎn)品的利潤y(單位:元)與其質(zhì)量指標值t的關(guān)系式為y=
估計用B配方生產(chǎn)的一件產(chǎn)品的利潤大于0的概率,并求用B配方生產(chǎn)的上述100件產(chǎn)品平均一件的利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線過點P(5,6),它在x軸上的截距是在y軸上的截距的2倍,則此直線方程為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)= 為奇函數(shù),a為常數(shù),
(1)求a的值;
(2)證明f(x)在區(qū)間(1,+∞)上單調(diào)遞增;
(3)若x∈[3,4],不等式f(x)>( x+m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海中一小島的周圍 內(nèi)有暗礁,海輪由西向東航行至處測得小島位于北偏東,航行8后,于處測得小島在北偏東(如圖所示).

1)如果這艘海輪不改變航向,有沒有觸礁的危險?請說明理由.

2)如果有觸礁的危險,這艘海輪在處改變航向為東偏南方向航行,求的最小值.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是平行四邊形,平面平面, , , 的中點.

(1)求證: 平面;

(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax+xlnx(a∈R)
(1)若函數(shù)f(x)在區(qū)間[e,+∞)上為增函數(shù),求a的取值范圍;
(2)當a=1且k∈Z時,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù))

為極點, 軸為正半軸為極軸建立極坐標系,曲線的極坐標方程為,若直線與曲線交于, 兩點。

(Ⅰ)若,求;

(Ⅱ)若點是曲線上不同于, 的動點,求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某互聯(lián)網(wǎng)理財平臺為增加平臺活躍度決定舉行邀請好友拿獎勵活動,規(guī)則是每邀請一位好友在該平臺注冊,并購買至少1萬元的12月定期,邀請人可獲得現(xiàn)金及紅包獎勵,現(xiàn)金獎勵為被邀請人理財金額的,且每邀請一位最高現(xiàn)金獎勵為300元,紅包獎勵為每邀請一位獎勵50元.假設甲邀請到乙、丙兩人,且乙、丙兩人同意在該平臺注冊,并進行理財,乙、丙兩人分別購買1萬元、2萬元、3萬元的12月定期的概率如下表:

理財金額

萬元

萬元

萬元

乙理財相應金額的概率

丙理財相應金額的概率

(1)求乙、丙理財金額之和不少于5萬元的概率;

(2)若甲獲得獎勵為元,求的分布列與數(shù)學期望.

查看答案和解析>>

同步練習冊答案