(本題滿分16分)
圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用的舊墻需維修),其他三面圍墻要新建,在舊墻對面的新墻上要留一個寬度為2m的進(jìn)出口,如圖所示已知舊墻的維修費(fèi)用為45元/m,新墻的造價為180元/m,設(shè)利用的舊墻長度為x(單位:m),修建此矩形場地圍墻的總費(fèi)用為y(單位:元)
⑴將y表示為x的函數(shù);
⑵寫出f(x)的單調(diào)區(qū)間,并證明;
⑶根據(jù)⑵,試確定x,使修建此矩形場地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用。
解:⑴如圖,設(shè)矩形的另一邊長為a m
則y=45x+180(x-2)+180×2a=225x+360a-360
由已知 ax=360a=
∴y=225x+-360(x>0) ……………………………………………6′
⑵任取x1>x2>0
y1-y2=225(x1-x2)+
=(x1-x2)( 225-) ……………………………………10′
∴x1x2>()2=242時, y1>y2
x1x2<24 時, y1y2
∴x1>x2≥24時
y1>y2 24> x1>x2>0時
y1<y2
即f(x)在(0,24)單調(diào)減,在(24,+∞)單調(diào)增 …………………14′
⑶x=24時,修建圍墻的總費(fèi)用最小,最小費(fèi)用為10440元…………………16
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
a1+2a2+3a3+…+nan |
1+2+3+…+n |
n(n+1)(2n+1) |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)本題共有2個小題,第1小題滿分8分,第2小題滿分8分.
已知函數(shù)(,、是常數(shù),且),對定義域內(nèi)任意(、且),恒有成立.
(1)求函數(shù)的解析式,并寫出函數(shù)的定義域;
(2)求的取值范圍,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)已知數(shù)列的前項和為,且.?dāng)?shù)列中,,
.(1)求數(shù)列的通項公式;(2)若存在常數(shù)使數(shù)列是等比數(shù)列,求數(shù)列的通項公式;(3)求證:①;②.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省私立無錫光華學(xué)校2009—2010學(xué)年高二第二學(xué)期期末考試 題型:解答題
本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題
(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)
已知函數(shù)
(1)判斷并證明在上的單調(diào)性;
(2)若存在,使,則稱為函數(shù)的不動點(diǎn),現(xiàn)已知該函數(shù)有且僅有一個不動點(diǎn),求的值;
(3)若在上恒成立 , 求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com