【題目】如圖,在正方形ABCD中,E,G分別在邊DA,DC上(不與端點(diǎn)重合),且DE=DG,過D點(diǎn)作DF⊥CE,垂足為F.
(Ⅰ)證明:B,C,G,F(xiàn)四點(diǎn)共圓;
(Ⅱ)若AB=1,E為DA的中點(diǎn),求四邊形BCGF的面積.

【答案】解:(Ⅰ)證明:∵DF⊥CE,

∴Rt△DFC∽R(shí)t△EDC,

= ,

∵DE=DG,CD=BC,

=

又∵∠GDF=∠DEF=∠BCF,

∴△GDF∽△BCF,

∴∠CFB=∠DFG,

∴∠GFB=∠GFC+∠CFB=∠GFC+∠DFG=∠DFC=90°,

∴∠GFB+∠GCB=180°,

∴B,C,G,F(xiàn)四點(diǎn)共圓.

(Ⅱ)∵E為AD中點(diǎn),AB=1,∴DG=CG=DE= ,

∴在Rt△DFC中,GF= CD=GC,連接GB,Rt△BCG≌Rt△BFG,

∴S四邊形BCGF=2SBCG=2× ×1× =


【解析】(Ⅰ)證明B,C,G,F(xiàn)四點(diǎn)共圓可證明四邊形BCGF對(duì)角互補(bǔ),由已知條件可知∠BCD=90°,因此問題可轉(zhuǎn)化為證明∠GFB=90°;(Ⅱ)在Rt△DFC中,GF= CD=GC,因此可得△GFB≌△GCB,則S四邊形BCGF=2SBCG,據(jù)此解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(sinx,﹣1), =(cosx, ),函數(shù)f(x)=( +
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移 個(gè)單位得到函數(shù)g(x)的圖象,在△ABC中,角A,B,C所對(duì)邊分別a,b,c,若a=3,g( )= ,sinB=cosA,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科技公司生產(chǎn)一種手機(jī)加密芯片,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于70為合格品,小于70為次品.現(xiàn)隨機(jī)抽取這種芯片共120件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如表:

測(cè)試指標(biāo)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

芯片數(shù)量(件)

8

22

45

37

8

已知生產(chǎn)一件芯片,若是合格品可盈利400元,若是次品則虧損50元.
(Ⅰ)試估計(jì)生產(chǎn)一件芯片為合格品的概率;并求生產(chǎn)3件芯片所獲得的利潤(rùn)不少于700元的概率.
(Ⅱ)記ξ為生產(chǎn)4件芯片所得的總利潤(rùn),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(m,cos2x), =(sin2x,n),設(shè)函數(shù)f(x)= ,且y=f(x)的圖象過點(diǎn)( , )和點(diǎn)( ,﹣2).
(Ⅰ)求m,n的值;
(Ⅱ)將y=f(x)的圖象向左平移φ(0<φ<π)個(gè)單位后得到函數(shù)y=g(x)的圖象.若y=g(x)的圖象上各最高點(diǎn)到點(diǎn)(0,3)的距離的最小值為1,求y=g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5kg,乙材料1kg,用5個(gè)工時(shí);生產(chǎn)一件產(chǎn)品B需要甲材料0.5kg,乙材料0.3kg,用3個(gè)工時(shí),生產(chǎn)一件產(chǎn)品A的利潤(rùn)為2100元,生產(chǎn)一件產(chǎn)品B的利潤(rùn)為900元.該企業(yè)現(xiàn)有甲材料150kg,乙材料90kg,則在不超過600個(gè)工時(shí)的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤(rùn)之和的最大值為元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險(xiǎn)的基本保費(fèi)為a(單位:元),繼續(xù)購(gòu)買該保險(xiǎn)的投保人成為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

上年度出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

保費(fèi)

0.85a

a

1.25a

1.5a

1.75a

2a

設(shè)該險(xiǎn)種一續(xù)保人一年內(nèi)出險(xiǎn)次數(shù)與相應(yīng)概率如下:

一年內(nèi)出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

概率

0.30

0.15

0.20

0.20

0.10

0.05

(Ⅰ)求一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率;
(Ⅱ)若一續(xù)保人本年度的保費(fèi)高于基本保費(fèi),求其保費(fèi)比基本保費(fèi)高出60%的概率;
(Ⅲ)求續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某城鎮(zhèn)由6條東西方向的街道和7條南北方向的街道組成,其中有一個(gè)池塘,街道在此變成一個(gè)菱形的環(huán)池大道.現(xiàn)要從城鎮(zhèn)的A處走到B處,使所走的路程最短,最多可以有種不同的走法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+x2(a為實(shí)常數(shù)).
(Ⅰ)若a=﹣2,求證:函數(shù)f(x)在(1,+∞)上是增函數(shù);
(Ⅱ)求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:如果函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)= ,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個(gè)均值點(diǎn).例如y=|x|是[﹣2,2]上的平均值函數(shù),0就是它的均值點(diǎn).若函數(shù)f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函數(shù)”,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案