已知的頂點A為(3,-1),AB邊上的中線所在直線方程為的平分線所在直線方程為,求BC邊所在直線的方程.

2x+9y-65=0

解析試題分析:本題考察的知識點主要是寫出一個點的坐標和直線的斜率.通過點B在角平分線上,和直線AB的中線可以求出B點的坐標.再通過角平分線定理,求出直線BC的斜率.從而寫出直線BC的方程.
試題解析:因為點B在直線上,設(shè)B,所以A,B兩點的中點坐標為,又因為該點在AB邊的中線上,解得,所以B(10,5).設(shè)直線BC的斜率為k,,,有角平分線性質(zhì)可得.,解得k=.所以.

考點:1.三角形中線的性質(zhì).2.三角形角平分線的性質(zhì).3.直線方程的求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點P1(2,3)、P2(-4,5)和A(-1,2),求過點A且與點P1、P2距離相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線過點,直線的斜率為且過點.
(1)求、的交點的坐標;
(2)已知點,若直線過點且與線段相交,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線L經(jīng)過點,且直線L在x軸上的截距等于在y軸上的截距的2倍,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直角坐標系中,射線OA: x-y=0(x≥0),OB: x+2y=0(x≥0),過點P(1,0)作直線分別交射線OA、OB于A、B兩點.

(1)當(dāng)AB中點為P時,求直線AB的斜率
(2)當(dāng)AB中點在直線上時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求經(jīng)過直線的交點M,且滿足下列條件的直線方程:
(1)與直線2x+3y+5=0平行;
(2)與直線2x+3y+5=0垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(已知橢圓 經(jīng)過點其離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于A、B兩點,以線段為鄰邊作平行四邊形OAPB,其中頂點P在橢圓上,為坐標原點.求到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓錐曲線C:,點分別為圓錐曲線C的左、右焦點,點B為圓錐曲線C的上頂點,求經(jīng)過點且垂直于直線的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

直線被兩直線截得的線段中點為P
(1)求直線的方程
(2)已知點,在直線上找一點M,使最小,并求出這個最小值

查看答案和解析>>

同步練習(xí)冊答案