定義域?yàn)閇a,b]的函數(shù)y=f(x)圖象的兩個(gè)端點(diǎn)為A、B,M(x,y)是f(x)圖象上任意一點(diǎn),其中x=λa+(1-λ)b∈[a,b],已知向量,若不等式恒成立,則稱(chēng)函數(shù)f(x)在[a,b]上“k階線(xiàn)性近似”.若函數(shù)在[1,2]上“k階線(xiàn)性近似”,則實(shí)數(shù)k的取值范圍為   
【答案】分析:先得出M、N橫坐標(biāo)相等,再將恒成立問(wèn)題轉(zhuǎn)化為求函數(shù)的最值問(wèn)題.
解答:解:由題意,M、N橫坐標(biāo)相等,恒成立,即,
由N在AB線(xiàn)段上,得A(1,0),B(2,),
∴直線(xiàn)AB方程為y=(x-1)
=y1-y2=-(x-1)=-(+)≤(當(dāng)且僅當(dāng)x=時(shí),取等號(hào))
∵x∈[1,2],∴x=時(shí),

故答案為:
點(diǎn)評(píng):本題考查向量知識(shí)的運(yùn)用,考查基本不等式的運(yùn)用,解答的關(guān)鍵是將已知條件進(jìn)行轉(zhuǎn)化,同時(shí)應(yīng)注意恒成立問(wèn)題的處理策略.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義域?yàn)閇a,b]的函數(shù)y=f(x)圖象的兩個(gè)端點(diǎn)為A、B,M(x,y)是f(x)圖象上任意一點(diǎn),其中x=λa+(1-λ)b∈[a,b],已知向量
ON
OA
+(1-λ)
OB
,若不等式|
MN
|≤k
恒成立,則稱(chēng)函數(shù)f(x)在[a,b]上“k階線(xiàn)性近似”.若函數(shù)y=x-
1
x
在[1,2]上“k階線(xiàn)性近似”,則實(shí)數(shù)k的取值范圍為( 。
A、[0,+∞)
B、[
1
12
,+∞)
C、[
3
2
+
2
,+∞)
D、[
3
2
-
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義域?yàn)閇a,b]的函數(shù)y=f(x)圖象的兩個(gè)端點(diǎn)為A、B,M(x,y)是f(x)圖象上任意一點(diǎn),其中x=λa+(1-λ)b∈[a,b],已知向量
ON
OA
+(1-λ)
OB
,若不等式|
MN
|≤k
恒成立,則稱(chēng)函數(shù)f(x)在[a,b]上“k階線(xiàn)性近似”.若函數(shù)y=x-
1
x
在[1,2]上“k階線(xiàn)性近似”,則實(shí)數(shù)k的取值范圍為
k≥
3
2
-
2
k≥
3
2
-
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•浦東新區(qū)一模)定義域?yàn)閇a,b]的函數(shù)y=f(x)圖象的兩個(gè)端點(diǎn)為A,B,向量
ON
=λ 
OA
+(1-λ) 
OB
,M(x,y)是f(x)圖象上任意一點(diǎn),其中x=λ
a
+(1-λ)
b
,λ∈[0,1].若不等式|MN|≤k恒成立,則稱(chēng)函數(shù)f(x)在[a,b]上滿(mǎn)足“k范圍線(xiàn)性近似”,其中最小的正實(shí)數(shù)k稱(chēng)為該函數(shù)的線(xiàn)性近似閥值.下列定義在[1,2]上函數(shù)中,線(xiàn)性近似閥值最小的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義域?yàn)閇a,b]的函數(shù)y=f(x)圖象上兩點(diǎn)A(a,f(a)),B(b,f(b)),M(x,y)是y=f(x)圖象上任意一點(diǎn),其中x=λa+(1-λ)b,λ∈[0,1].已知向量
.
ON
=λ
.
OA
+(1-λ)
.
OB
,若不等式|MN|≤k對(duì)任意λ∈[0,1]恒成立,則稱(chēng)函數(shù)f(x)在[a,b]上“k階線(xiàn)性近似”.若函數(shù)y=x-
1
x
在[1,3]上“k階線(xiàn)性近似”,則實(shí)數(shù)的k取值范圍為( 。
A、[0,+∞)
B、[
1
12
,+∞)
C、[
4
3
-
2
3
3
,+∞)
D、[
4
3
+
2
3
3
,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案