【題目】已知函數(shù)與.
(1)若曲線與曲線恰好相切于點(diǎn),求實(shí)數(shù)的值;
(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:. .
【答案】(1);(2);(3)見解析.
【解析】試題分析:(1)先求出導(dǎo)函數(shù) 由 ,解方程可得;
(2)由 在恒成立的必要條件為得,再利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及最值,從而證明時(shí),對(duì)任意 ,總有;(3)由(2)知:時(shí),令,化簡(jiǎn)可得,再令 ,多個(gè)不等式求和,利用對(duì)數(shù)的運(yùn)算法則即可的結(jié)論.
試題解析:(1)先求出導(dǎo)函數(shù) 由 ,解方程可得.
(2)令,則 ,在恒成立的必要條件為.即,又當(dāng)時(shí),,,令,則,即,在遞減,即,在恒成立的充分條件為.綜上,可得:
(3)設(shè)為的前n項(xiàng)和,則,要證原不等式,只需證:,由(2)知:時(shí)即:(當(dāng)且僅當(dāng)時(shí)取等號(hào)).令,則,即:,即, 令 ,多個(gè)不等式求和,從而原不等式得證
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把函數(shù)y=sin(x﹣ )的圖象向左平移 個(gè)單位長(zhǎng)度,再將圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的 倍(縱坐標(biāo)不變)得到函數(shù)f(x)的圖象. (Ⅰ)寫出函數(shù)f(x)的解析式;
(Ⅱ)若x∈[0, ]時(shí),關(guān)于x的方程f(x)﹣m=0有兩個(gè)不等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, 分別是橢圓: ()的左、右焦點(diǎn),離心率為, , 分別是橢圓的上、下頂點(diǎn), .
(1)求橢圓的方程;
(2)過(guò)作直線與交于, 兩點(diǎn),求三角形面積的最大值(是坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)對(duì)任意的實(shí)數(shù)滿足: ,且當(dāng)﹣3≤x<﹣1時(shí),f(x)=﹣(x+2)2 , 當(dāng)﹣1≤x<3時(shí),f(x)=x,則f(1)+f(2)+f(3)+…+f(2015)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若是公差不為0的等差數(shù)列的前項(xiàng)和,且成等比數(shù)列,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)是數(shù)列的前項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市根據(jù)地理位置劃分成了南北兩區(qū),為調(diào)查該市的一種經(jīng)濟(jì)作物(下簡(jiǎn)稱 作物)的生長(zhǎng)狀況,用簡(jiǎn)單隨機(jī)抽樣方法從該市調(diào)查了 500 處 作物種植點(diǎn),其生長(zhǎng)狀況如表:
其中生長(zhǎng)指數(shù)的含義是:2 代表“生長(zhǎng)良好”,1 代表“生長(zhǎng)基本良好”,0 代表“不良好,但仍有收成”,﹣1代表“不良好,絕收”.
(1)估計(jì)該市空氣質(zhì)量差的作物種植點(diǎn)中,不絕收的種植點(diǎn)所占的比例;
(2)能否有 99%的把握認(rèn)為“該市作物的種植點(diǎn)是否絕收與所在地域有關(guān)”?
(3)根據(jù)(2)的結(jié)論,能否提供更好的調(diào)查方法來(lái)估計(jì)該市作物的種植點(diǎn)中,絕收種植點(diǎn)的比例?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次大型運(yùn)動(dòng)會(huì)的組委會(huì)為了搞好接待工作,招募了16名男志愿者和14名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有10人和6人喜愛運(yùn)動(dòng),其余人不喜愛運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)完成下面2×2列聯(lián)表:
喜愛運(yùn)動(dòng) | 不喜愛運(yùn)動(dòng) | 總計(jì) | |
男 | 10 | 16 | |
女 | 6 | 14 | |
總計(jì) | 30 |
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為性別與喜愛運(yùn)動(dòng)有關(guān)系?
(3)已知喜歡運(yùn)動(dòng)的女志愿者中恰有4人會(huì)外語(yǔ),如果從中抽取2人負(fù)責(zé)翻譯工作,那么抽出的志愿者中至少有1人能勝任翻譯工作的概率是多少?
參考公式:K2= ,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k0) | 0.40 | 0.25 | 0.10 | 0.010 |
k0 | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1中.
(1)求證:AC⊥平面B1BDD1;
(2)求三棱錐B﹣ACB1體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2ax+a.
(1)若對(duì)任意的實(shí)數(shù)x都有f(1+x)=f(1﹣x)成立,求實(shí)數(shù)a的值;
(2)若f(x)在區(qū)間[1,+∞)上為單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)x∈[﹣1,1]時(shí),求函數(shù)f(x)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com