6.已知向量$\overrightarrow{OA}$=(3,-4),$\overrightarrow{OB}$=(6,-3),$\overrightarrow{OC}$=(5-m,-3-m),若A,B,C三點(diǎn)共線,則實(shí)數(shù)m的值$\frac{1}{2}$.

分析 利用三點(diǎn)共線,通過坐標(biāo)運(yùn)算求出m的值.

解答 解:∵向量$\overrightarrow{OA}$=(3,-4),$\overrightarrow{OB}$=(6,-3),$\overrightarrow{OC}$=(5-m,-3-m),
∴$\overrightarrow{AB}$=(3,1),$\overrightarrow{AC}$=(2-m,1-m),
∵A、B、C三點(diǎn)共線,
∴$\overrightarrow{AB}$∥$\overrightarrow{AC}$
∴3(1-m)=2-m
解得m=$\frac{1}{2}$
故答案為:$\frac{1}{2}$.

點(diǎn)評 本題考查三點(diǎn)共線,向量的坐標(biāo)運(yùn)算,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.△ABC的角A,B,C所對的邊分別為a,b,c,若cosA=$\frac{7}{8}$,c-a=2,b=2,則a=( 。
A.2B.$\frac{5}{2}$C.3D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一個周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
xa$\frac{π}{3}$b$\frac{5π}{6}$c
f(x)05d-50
(I)請直接寫出上表中a,b,c,d的值,并求函數(shù)f(x)的解析式;
(II)把y=f(x)圖象上所有點(diǎn)向右平移θ(θ>0)個單位長度,所得圖象恰好關(guān)于點(diǎn)($\frac{5π}{12}$,0)對稱,求θ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若曲線${C}_{1}(x-1)^{2}+{y}^{2}=1$與曲線C2:y(y-mx-m)=0有4個不同的交點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)B.(-$\frac{\sqrt{3}}{3},0$)∪(0,$\frac{\sqrt{3}}{3}$)C.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]D.(-∞,-$\frac{\sqrt{3}}{3}$)∪($\frac{\sqrt{3}}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$\frac{sin(\frac{π}{2}-α)+sin(-π-α)}{3cos(2π+α)+cos(\frac{3π}{2}-α)}=3$.
(I)求$\frac{sinα-3cosα}{sinα+cosα}$的值;
(II)若圓C的圓心在x軸上,圓心到直線y=tanα•x的距離為$2\sqrt{5}$且圓C被直線y=tanα•x所截弦長為8,求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若集合A=$\left\{{x|y=\sqrt{x}}\right\}$,B={x|y=ex},則A∩B=( 。
A.(0,+∞)B.[0,+∞)C.(1,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=4n2+2n,則此數(shù)列的通項(xiàng)公式為(  )
A.an=2n-2B.an=8n-2C.an=2n-1D.an=n2-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某校數(shù)學(xué)課外小組在坐標(biāo)紙上為學(xué)校的一塊空地設(shè)計(jì)植樹方案為:第K棵樹種植在點(diǎn)Pk(xk,yk)處,其中x1=1,y1=1,當(dāng)K≥2時(shí),$\left\{\begin{array}{l}{x_k}={x_{k-1}}+1-5[T(\frac{k-1}{5})-T(\frac{k-2}{5})]\\{y_k}={y_{k-1}}+T(\frac{k-1}{5})-T(\frac{k-2}{5})\end{array}\right.$T(a)表示非負(fù)實(shí)數(shù)a的整數(shù)部分,例如T(2.6)=2,T(0.2)=0.按此方案第2016棵樹種植點(diǎn)的坐標(biāo)應(yīng)為(1,404).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)=$\left\{{\begin{array}{l}{{a^x},x>1}\\{(4-\frac{a}{2})x+2,x≤1}\end{array}}$是R上的增函數(shù),則實(shí)數(shù)a的取值范圍( 。
A.[4,8 )B.(4,8)C.(1,8)D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案