已知圓,橢圓,若的離心率為,如果相交于兩點(diǎn),且線段恰為圓的直徑,求直線與橢圓的方程。
直線方程為,橢圓方程為:

試題分析:由,得,
于是橢圓的方程可化為,
因?yàn)榫段恰為圓的直徑,所以過(guò)圓心,且圓心為的中點(diǎn),
所以可設(shè)直線的方程為,
得:       ①
設(shè),則,即,得
因此直線的方程為:,即.
此時(shí),①式即為,
那么,解得,
所以橢圓方程為
故所求的直線方程為,橢圓方程為:.
點(diǎn)評(píng):解析幾何的本質(zhì)問(wèn)題是用代數(shù)方法解決幾何問(wèn)題,所以一定要注意函數(shù)與方程思想、數(shù)形結(jié)合思想、轉(zhuǎn)化與劃歸思想等數(shù)學(xué)思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知曲線C: 與拋物線的一個(gè)交點(diǎn)為M,為拋物線的焦點(diǎn),若,則b的值為
A.B.-C.D.-

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知為橢圓的左右焦點(diǎn),P是橢圓上一點(diǎn),且P到橢圓左準(zhǔn)線的距離為
10,若為線段的中點(diǎn),則(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分13分)在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三頂點(diǎn)的距離分別為,且滿足,求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)在平面直角坐標(biāo)系中,已知點(diǎn),過(guò)點(diǎn)作拋物線的切線,其切點(diǎn)分別為(其中)。
⑴ 求的值;
⑵ 若以點(diǎn)為圓心的圓與直線相切,求圓的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)點(diǎn)且與雙曲線-y=1有公共漸近線的雙曲線方程是(     )
A.=1B.=1
C.y=1D.=1或=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線C:為拋物線上一點(diǎn),關(guān)于軸對(duì)稱的點(diǎn),為坐標(biāo)原點(diǎn).(1)若,求點(diǎn)的坐標(biāo);
(2)若過(guò)滿足(1)中的點(diǎn)作直線交拋物線兩點(diǎn), 且斜率分別為,且,求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)、是橢圓的左、右焦點(diǎn),為直線上一點(diǎn),是底角為的等腰三角形,則的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若雙曲線的左焦點(diǎn)與拋物線的焦點(diǎn)重合,則的值為
(  )
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案