等比數(shù)列{an}中,若公比q=4,且前3項(xiàng)之和等于21,則該數(shù)列的通項(xiàng)公式an


  1. A.
    4n-1
  2. B.
    4n
  3. C.
    3n
  4. D.
    3n-1
A
分析:根據(jù)等比數(shù)列的通項(xiàng)公式,把q代入前3項(xiàng)的和,進(jìn)而求得a1,從而數(shù)列的通項(xiàng)公式可得.
解答:由題意知,
a1+a2+a3=a1+4a1+16a1=21,
解得a1=1,
所以通項(xiàng)an=4n-1
故選A.
點(diǎn)評:本題考查等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式的應(yīng)用,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,a2=18,a4=8,則公比q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a1=0,an+1=
1
2-an

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:Sn<n-ln(n+1);
(Ⅲ)設(shè)bn=an
9
10
n,證明:對任意的正整數(shù)n、m,均有|bn-bm|<
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a3=2,a7=32,則a5=
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,an=2×3n-1,則由此數(shù)列的奇數(shù)項(xiàng)所組成的新數(shù)列的前n項(xiàng)和為
9n-1
4
9n-1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,已知對n∈N*有a1+a2+…+an=2n-1,那么
a
2
1
+
a
2
2
+…+
a
2
n
等于( 。

查看答案和解析>>

同步練習(xí)冊答案