(2011•廣東模擬)等比數(shù)列{an} 中,a1,a2,a3分別是下表第一、二、三行中的某一個(gè)數(shù),且a1,a2,a3中的任何兩個(gè)數(shù)不在下表的同一列.
第一列 第二列 第三列
第一行 3 2 10
第二行 6 4 14
第三行 9 8 18
(Ⅰ)求數(shù)列{an} 的通項(xiàng)公式;
(Ⅱ)若數(shù)列 {bn} 滿足 bn=
1
(n+2)log3(
an+1
2
)
,記數(shù)列 {bn} 的前n項(xiàng)和為Sn,證明Sn
3
4
分析:(I)當(dāng)a1=3時(shí),不合題意;當(dāng)a1=2時(shí),當(dāng)且僅當(dāng)a2=6,a3=18時(shí),符合題意;當(dāng)a1=10時(shí),不合題意.因此a1=2,a2=6,a3=18,由此能求出數(shù)列{an} 的通項(xiàng)公式.
(II)因?yàn)?span id="npfcotu" class="MathJye">bn=
1
(n+2)log3(
an+1
2
)
,所以bn=
1
n(n+2)
,由此利用裂項(xiàng)求和法能夠證明Sn
3
4
解答:解:(I)當(dāng)a1=3時(shí),不合題意;
當(dāng)a1=2時(shí),當(dāng)且僅當(dāng)a2=6,a3=18時(shí),符合題意;
當(dāng)a1=10時(shí),不合題意.…(4分)(只要找出正確的一組就給3分)
因此a1=2,a2=6,a3=18,
所以公比q=3,…(4分)
an=2•3n-1.…(6分)
(II)因?yàn)?span id="j7nl1oy" class="MathJye">bn=
1
(n+2)log3(
an+1
2
)

所以bn=
1
n(n+2)
…(9分)
所以Sn=b1+b2+b3+…+bn=
1
1×3
+
1
2×4
+…
1
n(n+2)

=
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2
)
…(12分)
=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)<
3
4
,
Sn
3
4
.…(14分)
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式和數(shù)列前n項(xiàng)和的求法,考查不等式的證明.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意裂項(xiàng)求和法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•廣東模擬)給定函數(shù)f(x)=
x2
2(x-1)

(1)試求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)已知各項(xiàng)均為負(fù)的數(shù)列{an}滿足,4Sn•f(
1
an
)=1
,求證:-
1
an+1
ln
n+1
n
<-
1
an
;
(3)設(shè)bn=-
1
an
,Tn為數(shù)列 {bn} 的前n項(xiàng)和,求證:T2012-1<ln2012<T2011

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•廣東模擬)已知集合M={y|y=x2-1,x∈R},N={x|y=
2-x2
}
,則M∩N=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•廣東模擬)已知函數(shù)f(x)=
a-x
+
x
(a∈N*),對(duì)定義域內(nèi)任意x1,x2,滿足|f(x1)-f(x2)|<1,則正整數(shù)a的取值個(gè)數(shù)是
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•廣東模擬)已知命題“?x∈R,x2+2ax+1<0”是真命題,則實(shí)數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•廣東模擬)已知線段AB的兩個(gè)端點(diǎn)分別為A(0,1),B(1,0),P(x,y)為線段AB上不與端點(diǎn)重合的一個(gè)動(dòng)點(diǎn),則(x+
1
x
)(y+
1
y
)
的最小值為
25
4
25
4

查看答案和解析>>

同步練習(xí)冊(cè)答案