已知數(shù)列{an},其前n項和為Sn,對任意n∈N*都有:Sn=man+1-m(m∈R,m≠0且m≠1).
(1)求證:{an}是等比數(shù)列;
(2)若S3,S7,S5,構(gòu)成等差數(shù)列,求實數(shù)m的值;
(3)求證:對任意大于1的實數(shù)m,S1+S2+S3+…+Sn,S3n+1+S3n+2+S3n+3+…+S4n,S7n+1+S7n+2+S7n+3+…+S8n不能構(gòu)成等差數(shù)列.
【答案】
分析:(1)由公式
,利用題設(shè)條件能夠?qū)С鯽
n=ma
n-ma
n-1,由此能夠證明{a
n}是等比數(shù)列.
(2)由S
3,S
7,S
5構(gòu)成等差數(shù)列,知:2S
7=S
3+S
5,所以2a
7=a
3+a
5,由此能求出實數(shù)m的值.
(3)假設(shè)S
1+S
2+S
3+…+S
n,S
3n+1+S
3n+2+S
3n+3+…+S
4n,S
7n+1+S
7n+2+S
7n+3+…+S
8n構(gòu)成等差數(shù)列,結(jié)合題設(shè)條件,由等差數(shù)列的性質(zhì)能夠推導出2q
3nS
n=q
7nS
n+S
n,因為此方程無解所以假設(shè)錯誤,由此能夠證明對任意大于1的實數(shù)m,S
1+S
2+S
3+…+S
n,S
3n+1+S
3n+2+S
3n+3+…+S
4n,S
7n+1+S
7n+2+S
7n+3+…+S
8n不能構(gòu)成等差數(shù)列.
解答:解:(1)當n=1時,a
1=S
1=ma
1+1-m,
又m≠0,且m≠1,故a
1=1.
當n≥2時,S
n-1=ma
n-1+1-m,
故a
n=ma
n-ma
n-1,即(m-1)a
n=ma
n-1,
也即
=
≠0,
所以,{a
n}是以1為首項,
為公比的等比數(shù)列;
(2)由S
3,S
7,S
5構(gòu)成等差數(shù)列,知:2S
7=S
3+S
5,
即2(ma
7+1-m)=(ma
3+1-m)+(ma
5+1-m),又m≠0,化簡得:2a
7=a
3+a
5,
令q=
,則2q
4-q
2-1=0,得q
2=1或
(舍),
即q=1(舍),q=-1,
由
,解得,m=
.
(3)假設(shè)S
1+S
2+S
3+…+S
n,S
3n+1+S
3n+2+S
3n+3+…+S
4n,
S
7n+1+S
7n+2+S
7n+3+…+S
8n構(gòu)成等差數(shù)列,
則2(S
3n+1+S
3n+2+S
3n+3+…+S
4n)=(S
1+S
2+S
3+…+S
n)+(S
7n+1+S
7n+2+S
7n+3+…+S
8n)
即2(ma
3n+1+m-1+ma
3n-2+m-1+…+ma
4n+m-1)
=(ma
1+m-1+ma
2+m-1+…+ma
n+m-1)+(ma
7n+1+m-1+ma
7n+2+m-1+…+ma
8n+m-1),
化簡得2m(S
4n-S
3n)=mS
n+m(S
8n-S
7n),
又知
,
,
可得2q
3nS
n=q
7nS
n+S
n,(*)
而m>1,所以q>1,S
n>0,
且1+q
7n>2
>
=2q
3n,故(*)無解
所以假設(shè)錯誤,
故對任意大于1的實數(shù)m,
S
1+S
2+S
3+…+S
n,S
3n+1+S
3n+2+S
3n+3+…+S
4n,S
7n+1+S
7n+2+S
7n+3+…+S
8n不能構(gòu)成等差數(shù)列.
點評:本題考查等比數(shù)列的證明,實數(shù)值的求法,等差數(shù)列的證明,考查數(shù)列知識,考查化歸與轉(zhuǎn)化、分類與整合的數(shù)學思想,培養(yǎng)學生的抽象概括能力、推理論證能力、運算求解能力和創(chuàng)新意識.