經(jīng)過點P(-2,-3)作圓C:(x-3)2+(y-2)2=1的切線,求切線的直線方程.
分析:設出經(jīng)過P切線方程,根據(jù)圓心到切線的距離等于圓的半徑求出k的值,即可確定出切線方程.
解答:解:設經(jīng)過P(-2,-3)向圓C所作的切線方程為y+3=k(x+2),即kx-y+2k-3=0,
∵圓心(3,2)到切線的距離d=r,即
|3k-2+2k-3|
k2+1
=1,
解得:k=
4
3
或k=
3
4
,
則所求切線方程為4x-3y-1=0或3x-4y-6=0.
點評:此題考查了直線與圓的位置關(guān)系,當直線與圓相切時,圓心到切線的距離等于圓的半徑,熟練掌握此性質(zhì)是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

一條光線經(jīng)過點P(-2,3)射到x軸上,反射后經(jīng)過點Q(1,1),入射光線所在的直線的方程是
 
,反射光線所在的直線的方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角α的終邊經(jīng)過點P(2,-3),則cosα的值是( 。
A、
3
2
B、-
3
2
C、
2
13
13
D、-
2
13
13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角α終邊經(jīng)過點P(-2,3),則α的正弦值為
3
13
13
3
13
13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選做題:坐標系與參數(shù)方程
已知直線l經(jīng)過點P(2,3),傾斜角α=
π6
,
(Ⅰ)寫出直線l的參數(shù)方程.
(Ⅱ)設l與圓x2+y2=4相交與兩點A、B,求點P到A、B兩點的距離之和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l的斜率為2,且經(jīng)過點P(2,3),則直線l的方程是
2x-y-1=0
2x-y-1=0

查看答案和解析>>

同步練習冊答案