11.設(shè)F1,F(xiàn)2為定點(diǎn),|F1F2|=6,動(dòng)點(diǎn)M滿足|MF1|+|MF2|=8,則動(dòng)點(diǎn)M的軌跡是(  )
A.橢圓B.雙曲線C.線段D.兩條射線

分析 依據(jù)動(dòng)點(diǎn)M滿足的條件及橢圓的定義可得:動(dòng)點(diǎn)M的軌跡是:以F1,F(xiàn)2為焦點(diǎn)的橢圓.

解答 解:根據(jù)橢圓的定義知,到兩定點(diǎn)F1,F(xiàn)2的距離之和為8>|F1F2|=6,
動(dòng)點(diǎn)M的軌跡是:以F1,F(xiàn)2為焦點(diǎn)的橢圓.
故選:A.

點(diǎn)評(píng) 本題考查了橢圓的定義,熟練掌握橢圓的定義是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1=1,S2=a3,則a2=2,Sn=$\frac{{n}^{2}+n}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.若x2+xy-2y2=0(x>0,y>0),求$\frac{{x}^{2}+3xy+{y}^{2}}{{x}^{2}+{y}^{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.如果在集合A={1,2,3,…,9}的三個(gè)元素的子集中,三個(gè)元素的和分別為a1,a2,a3,…,an,則a1+a2+a3+…+an=1980.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)F1,F(xiàn)2為橢圓$\frac{x^2}{25}+\frac{y^2}{16}$=1的焦點(diǎn),P為橢圓上的一點(diǎn),且∠F1PF2=60°,則△PF1F2的面積為3 $\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知向量$\overrightarrow{a}$=(2,4),$\overrightarrow$=(-1,n),若$\overrightarrow{a}$⊥$\overrightarrow$,則n=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=2,BC=4,AA1=a,點(diǎn)E、F分別為AB、C1B的中點(diǎn).
(Ⅰ)求證:EF∥平面ACC1A1;
(Ⅱ)如果∠A1FE=90°,寫(xiě)出a的值;(只寫(xiě)出結(jié)果即可,不用寫(xiě)過(guò)程)
(Ⅲ)在(Ⅱ)的條件下,求點(diǎn)B到平面A1EF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)函數(shù)f(x)=4sinx•sin2(${\frac{π+2x}{4}}$)-sin2x+cos2x.
(1)求函數(shù)f(x)在[0,2π)內(nèi)的單調(diào)遞增區(qū)間;
(2)設(shè)集合A={x|$\frac{π}{6}$≤x≤$\frac{2π}{3}$},B={x|-2<f(x)-m<2},若A⊆B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知三棱錐S-ABC中,底面ABC為邊長(zhǎng)等于$\sqrt{3}$的等邊三角形,SA垂直于底面ABC,SA=1,那么三棱錐S-ABC的外接球的表面積為5π.

查看答案和解析>>

同步練習(xí)冊(cè)答案