【題目】關(guān)于圓周率,數(shù)學發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐試驗.受其啟發(fā),我們也可以通過設(shè)計下面的試驗來估計的值,試驗步驟如下:①先請高二年級 500名同學每人在小卡片上隨機寫下一個實數(shù)對;②若卡片上的能與1構(gòu)成銳角三角形,則將此卡片上交;③統(tǒng)計上交的卡片數(shù),記為;④根據(jù)統(tǒng)計數(shù)估計的值.假如本次試驗的統(tǒng)計結(jié)果是,那么可以估計的值約為( )

A. B. C. D.

【答案】A

【解析】分析:500對都小于l的正實數(shù)對(x,y)滿足,面積為1,兩個數(shù)能與1構(gòu)成銳角三角形三邊的數(shù)對(x,y),滿足x2+y21且,x+y>1,面積為1﹣,由此能估計π的值.

詳解:由題意,500對都小于l的正實數(shù)對(x,y)滿足,面積為1,

兩個數(shù)能與1構(gòu)成銳角三角形三邊的數(shù)對(x,y),滿足,

x2+y2>1,,

面積為1﹣,

因為統(tǒng)計兩數(shù)能與l 構(gòu)成銳角三角形三邊的數(shù)對(x,y) 的個數(shù)m=113,

所以=1﹣,所以π=

故答案為:A

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1若曲線處的切線方程為,求實數(shù)的值;

2設(shè),若對任意兩個不等的正數(shù),,都有恒成立,求實數(shù)的取值范圍;

3若在上存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù),,,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方形的邊長為,將沿對角線折起,使平面平面,得到如圖所示的三棱錐,若邊的中點,分別為上的動點(不包括端點),且,設(shè),則三棱錐的體積取得最大值時,三棱錐的內(nèi)切球的半徑為_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,拋物線與橢圓在第一線象限的交點為

1)求曲線的方程;

2)在拋物線上任取一點,在點處作拋物線的切線,若橢圓上存在兩點關(guān)于直線對稱,求點的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018126日,甘肅省人民政府辦公廳發(fā)布《甘肅省關(guān)于餐飲業(yè)質(zhì)量安全提升工程的實施意見》,衛(wèi)生部對16所大學食堂的“進貨渠道合格性”和“食品安全”進行量化評估.滿10分者為“安全食堂”,評分7分以下的為“待改革食堂”.評分在4分以下考慮為“取締食堂”,所有大學食堂的評分在7~10分之間,以下表格記錄了它們的評分情況:

(1)現(xiàn)從16所大學食堂中隨機抽取3個,求至多有1個評分不低于9分的概率;

(2)以這16所大學食堂評分數(shù)據(jù)估計大學食堂的經(jīng)營性質(zhì),若從全國的大學食堂任選3個,記表示抽到評分不低于9分的食堂個數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果有一天我們分居異面直線的兩頭,那我一定穿越時空的阻隔,畫條公垂線向你沖來,一刻也不愿逗留.如圖1所示,在梯形中,//,且,,分別延長兩腰交于點,點為線段上的一點,將沿折起到的位置,使,如圖2所示.

(1)求證:;

(2)若,,四棱錐的體積為,求四棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,拋擲一藍、一黃兩枚質(zhì)地均勻的正四面體骰子,分別觀察底面上的數(shù)字.

1)用表格表示試驗的所有可能結(jié)果;

2)列舉下列事件包含的樣本點:A=“兩個數(shù)字相同,B=“兩個數(shù)字之和等于5”C=“藍色骰子的數(shù)字為2”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)).

(Ⅰ)當時,求不等式的解集;

(Ⅱ)求證:,并求等號成立的條件.

查看答案和解析>>

同步練習冊答案