【題目】通過隨機詢問110名性別不同的大學生是否愛好某項運動,得到如下的列聯(lián)表:
由 列聯(lián)表算得參照附表,得到的正確結論是( ).
A. 在犯錯誤的概率不超過0.01的前提下認為“愛好該項運動與性別有關”
B. 在犯錯誤的概率不超過0.01的前提下認為“愛好該項運動與性別無關”
C. 在犯錯誤的概率不超過0.001的前提下,認為“愛好該項運動與性別有關”
D. 在犯錯誤的概率不超過0.001的前提下,認為“愛好該項運動與性別無關”
科目:高中數(shù)學 來源: 題型:
【題目】設xOy,為兩個平面直角坐標系,它們具有相同的原點,Ox正方向到正方向的角度為θ,那么對于任意的點M,在xOy下的坐標為(x,y),那么它在坐標系下的坐標(,)可以表示為:=xcosθ+ysinθ,=y(tǒng)cosθ-xsinθ.根據(jù)以上知識求得橢圓3-+-1=0的離心率為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(sin 2x,1),B,設函數(shù)f(x)=(x∈R),其中O為坐標原點.
(1)求函數(shù)f(x)的最小正周期;
(2)當x∈時,求函數(shù)f(x)的最大值與最小值;
(3)求函數(shù)f(x)的單調減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校數(shù)學課外興趣小組為研究數(shù)學成績是否與性別有關,先統(tǒng)計本校高三年級每個學生一學期數(shù)學成績平均分(采用百分制),剔除平均分在40分以下的學生后,共有男生300名,女生200名.現(xiàn)采用分層抽樣的方法,從中抽取了100名學生,按性別分為兩組,并將兩組學生成績分為6組,得到如下所示頻數(shù)分布表.
分數(shù)段 | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
男 | 3 | 9 | 18 | 15 | 6 | 9 |
女 | 6 | 4 | 5 | 10 | 13 | 2 |
(1)估計男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點值作代表),從計算結果看,數(shù)學成績與性別是否有關;
(2)規(guī)定80分以上為優(yōu)分(含80分),請你根據(jù)已知條件作出2×2列聯(lián)表,并判斷是否有90%以上的把握認為“數(shù)學成績與性別有關”.
優(yōu)分 | 非優(yōu)分 | 合計 | |
男生 | |||
女生 | |||
附表及公式:
0.100 | 0.050 | 0.010 | 0.001 | |
k | 2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知復數(shù)z=+(a2-5a-6)i(a∈R).試求實數(shù)a分別為什么值時,z分別為(1)實數(shù)?(2)虛數(shù)?(3)純虛數(shù)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當a=2時,求不等式f(x)<g(x)的解集;
(2)設a> ,且當x∈[ ,a]時,f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)若過點且斜率為k的直線l與橢圓相交于不同的兩點A,B,試問在x軸上是否存在點,使是與無關的常數(shù)?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知x=3是函數(shù)f(x)=aln(1+x)+x2﹣10x的一個極值點.
(Ⅰ)求a;
(Ⅱ)求函數(shù)f(x)的單調區(qū)間;
(Ⅲ)若直線y=b與函數(shù)y=f(x)的圖象有3個交點,求b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com