【題目】在銳角△ABC中, = .
(1)求角A;
(2)若a=2,且sinB+cos(C+2B﹣ )取得最大值時(shí),求△ABC的面積.
【答案】
(1)解:銳角△ABC中,∵ = ,∴ = ,∴sinA= ,A= .
(2)解:由(1)可得B+C= ,∴C+2B﹣ =B﹣ ,
∴sinB+cos(C+2B﹣ )=sinB+cos(B﹣ )= sinB+ cosB= sin(B+ ),
故當(dāng)B+ = 時(shí),即B= 時(shí),sinB+cos(C+2B﹣ )取得最大值 ,此時(shí),A=B=C= ,△ABC為等邊三角形,
∴△ABC的面積為 bcsinA= 22 =
【解析】(1)利用余弦定理、誘導(dǎo)公式化簡所給的式子,求得sinA 的值,可得A的值.(2)由(1)可得B+C= ,故有C+2B﹣ =B﹣ ,再利用兩角和差的三角公式、正弦函數(shù)的值域求得sinB+cos(C+2B﹣ )取得最大值 ,此時(shí),△ABC為等邊三角形,從而求得它的面積.
【考點(diǎn)精析】關(guān)于本題考查的正弦定理的定義和余弦定理的定義,需要了解正弦定理:;余弦定理:;;才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了得到函數(shù)y=sin2x的圖象,只需把函數(shù)y=sin(2x﹣ )的圖象( )
A.向左平移 個(gè)單位長度
B.向右平移 個(gè)單位長度
C.向左平移 個(gè)單位長度
D.向右平移 個(gè)單位長度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】梯形ABCD頂點(diǎn)B、C在以AD為直徑的圓上,AD=2米,
(1)如圖1,若電熱絲由AB,BC,CD這三部分組成,在AB,CD上每米可輻射1單位熱量,在BC上每米可輻射2單位熱量,請?jiān)O(shè)計(jì)BC的長度,使得電熱絲輻射的總熱量最大,并求總熱量的最大值;
(2)如圖2,若電熱絲由弧和弦BC這三部分組成,在弧上每米可輻射1單位熱量,在弦BC上每米可輻射2單位熱量,請?jiān)O(shè)計(jì)BC的長度,使得電熱絲輻射的總熱量最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了檢驗(yàn)學(xué)習(xí)情況,某培訓(xùn)機(jī)構(gòu)于近期舉辦一場競賽活動(dòng),分別從甲、乙兩班各抽取10名學(xué)員的成績進(jìn)行統(tǒng)計(jì)分析,其成績的莖葉圖如圖所示(單位:分),假設(shè)成績不低于90分者命名為“優(yōu)秀學(xué)員”.
(1)分別求甲、乙兩班學(xué)員成績的平均分(結(jié)果保留一位小數(shù));
(2)從甲班4名優(yōu)秀學(xué)員中抽取兩人,從乙班2名80分以下的學(xué)員中抽取一人,求三人平均分不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為宣傳3月5日學(xué)雷鋒紀(jì)念日,重慶二外在高一,高二年級中舉行學(xué)雷鋒知識競賽,每年級出3人組成甲乙兩支代表隊(duì),首輪比賽每人一道必答題,答對則為本隊(duì)得1分,答錯(cuò)不答都得0分,已知甲隊(duì)3人每人答對的概率分別為,乙隊(duì)每人答對的概率都是.設(shè)每人回答正確與否相互之間沒有影響,用表示甲隊(duì)總得分.
(1)求隨機(jī)變量的分布列及其數(shù)學(xué)期望;
(2)求甲隊(duì)和乙隊(duì)得分之和為4的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax﹣1,(a為實(shí)數(shù)),g(x)=lnx﹣x
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)g(x)的極值;
(3)求證:lnx<x<ex(x>0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=cos(x+ )圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的 倍,縱坐標(biāo)不變,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的一個(gè)減區(qū)間是( )
A.[﹣ , ]
B.[﹣ , ]
C.[﹣ , ]
D.[﹣ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定橢圓C: + =1(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓”.已知橢圓C的離心率為 ,且經(jīng)過點(diǎn)(0,1).
(1)求實(shí)數(shù)a,b的值;
(2)若過點(diǎn)P(0,m)(m>0)的直線l與橢圓C有且只有一個(gè)公共點(diǎn),且l被橢圓C的伴隨圓C1所截得的弦長為2 ,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣kx+2,k∈R.
(1)若k=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)<2在R+上恒成立,求k的取值范圍;
(3)若x1>0,x2>0,x1+x2<ex1x2 , 求證x1+x2>1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com