精英家教網 > 高中數學 > 題目詳情
選做題:在A、B、C、D四小題中只能選做2題,每小題10分,共20分.解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,PA切⊙O于點A,D為PA的中點,過點D引割線交⊙O于B、C兩點.求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
設M=,N=,試求曲線y=sinx在矩陣MN變換下的曲線方程.
C.選修4-4:坐標系與參數方程
在極坐標系中,圓C的極坐標方程為,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為(t為參數),求直線l被圓C所截得的弦長.
D.選修4-5:不等式選講
解不等式:|2x+1|-|x-4|<2.

【答案】分析:A先根據條件得到DP2=DB•DC;進而得到△BDP∽△PDC即可得到結論;
B 先求出MN,再設(x,y)是曲線y=sinx上的任意一點,在矩陣MN變換下對應的點為(a,b).根據矩陣變換得到即,再代入原函數即可得到結論.
C 把曲線的極坐標方程化為直角坐標方程可得分別表示圓和一條直線,利用點到直線的距離公式可得弦心距,最后結合弦長公式即可得到結論.
D 分情況去絕對值,分別求解即可.
解答:選做題
A.證明:因為PA與圓相切于A,
所以DA2=DB•DC,…(2分)
因為D為PA中點,所以DP=DA,
所以DP2=DB•DC,即. …(5分)
因為∠BDP=∠PDC,所以△BDP∽△PDC,…(8分)
所以∠DPB=∠DCP.                  …(10分)
B.MN==,…(4分)
設(x,y)是曲線y=sinx上的任意一點,在矩陣MN變換下對應的點為(a,b).
=,所以       …(8分)
代入y=sinx得:b=sin2a,即b=2sin2a.
即曲線y=sinx在矩陣MN變換下的曲線方程為y=2sin2x.  …(10分)
C.曲線C的極坐標方程ρ=cos(θ+)=cosθ-sinθ,
化為直角坐標方程為x2+y2-x+y=0,即(x-2+(y+2=.…(3分)
直線L:,(t為參數)可化為3x+4y+1=0,…(6分)
圓心到直線的距離d==,…(8分)
弦長L=2=..…(10分)
D.當x≥4時,2x+1-x+4<2,解得x<-3(舍去);…(3分)
當-≤x<4時,2x+1+x-4<2,解得x<,∴-≤x<;…(6分)
當x<-時,-2x-1+x-4<2,解得x>-7,∴-7<x<-.…(9分)
綜上,不等式的解集為(-7,).…(10分)
點評:本題主要考查把極坐標方程化為直角坐標方程的方法,簡單的矩陣運算和絕對值不等式的解法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【選做題】在A,B,C,D四小題中只能選做2題,每題10分,共計20分.請在答題卡指定區(qū)域內作答,解答時寫出文字說明、證明過程或演算步驟.
21-1.(選修4-2:矩陣與變換)
設M是把坐標平面上的點的橫坐標伸長到2倍,縱坐標伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1在M-1的作用下的新曲線的方程.
21-2.(選修4-4:參數方程)
以直角坐標系的原點O為極點,x軸的正半軸為極軸.已知點P的直角坐標為(1,-5),點M的極坐標為(4,
π
2
),若直線l過點P,且傾斜角為 
π
3
,圓C以M為圓心、4為半徑.
(1)求直線l關于t的參數方程和圓C的極坐標方程;
(2)試判定直線l和圓C的位置關系.

查看答案和解析>>

科目:高中數學 來源: 題型:

(選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計20分.請在答題卡指定區(qū)域內作答,解答時應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于N,過
N點的切線交CA的延長線于P.
(1)求證:PM2=PA•PC;
(2)若⊙O的半徑為2
3
,OA=
3
OM,求MN的長.
B.選修4-2:矩陣與變換
曲線x2+4xy+2y2=1在二階矩陣M=
.
1a
b1
.
的作用下變換為曲線x2-2y2=1,求實數a,b的值;
C.選修4-4:坐標系與參數方程
在極坐標系中,圓C的極坐標方程為ρ=
2
cos(θ+
π
4
)
,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為
x=1+
4
5
y=-1-
3
5
(t為參數),求直線l被圓C所截得的弦長.
D.選修4-5:不等式選講
設a,b,c均為正實數.
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數學 來源: 題型:

(選做題)在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.請在答卷紙指定區(qū)域內作答.解答應寫出文字說明、證明過程或演算步驟.
(B)(選修4-2:矩陣與變換)
二階矩陣M有特征值λ=8,其對應的一個特征向量e=
1
1
,并且矩陣M對應的變換將點(-1,2)變換成點(-2,4),求矩陣M2
(C)(選修4-4:坐標系與參數方程)
已知極坐標系的極點在直角坐標系的原點,極軸與x軸的正半軸重合,曲線C的極坐標方程為ρ2cos2θ+3ρ2sin2θ=3,直線l的參數方程為
x=-
3
t
y=1+t
(t為參數,t∈R).試在曲線C上一點M,使它到直線l的距離最大.

查看答案和解析>>

科目:高中數學 來源: 題型:

 選做題(在A、B、C、D四小題中只能選做兩題,并將選作標記用2B鉛筆涂黑,每小題10分,共20分,請在答題指定區(qū)域內作答,解答時應寫出文字說明、證明過程或演算步驟).
A、(選修4-1:幾何證明選講)
如圖,BD為⊙O的直徑,AB=AC,AD交BC于E,求證:AB2=AE•AD
B、(選修4-2:矩形與變換)
已知a,b實數,如果矩陣M=
1a
b2
所對應的變換將直線3x-y=1變換成x+2y=1,求a,b的值.
C、(選修4-4,:坐標系與參數方程)
設M、N分別是曲線ρ+2sinθ=0和ρsin(θ+
π
4
)=
2
2
上的動點,判斷兩曲線的位置關系并求M、N間的最小距離.
D、(選修4-5:不等式選講)
設a,b,c是不完全相等的正數,求證:a+b+c>
ab
+
bc
+
ca

查看答案和解析>>

科目:高中數學 來源: 題型:

選做題:在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.請在答卷紙指定區(qū)域內作答.解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,AD是∠BAC的平分線,⊙O過點A且與BC邊相切于點D,與AB、AC分別交于E,F(xiàn),求證:EF∥BC.

B.選修4-2:矩陣與變換
已知a,b∈R若矩陣M=
.
-1a
b3
.
所對應的變換把直線l:2x-y=3變換為自身,求a,b的值.

C.選修4-4:坐標系與參數方程
將參數方程
x=2(t+
1
t
)
y=4(t-
1
t
)
(t為參數)化為普通方程.
D.選修4-5:不等式選講
已知a,b是正數,求證:(a+
1
b
)(2b+
1
2a
)≥
9
2

查看答案和解析>>

同步練習冊答案