給出下面類(lèi)比推理命題(其中Q為有理數(shù)集,R為實(shí)數(shù)集,C為復(fù)數(shù)集):
①“若a,b∈R,則a-b=0⇒a=b”類(lèi)比推出“若a,b∈C,則a-b=0⇒a=b”;
②“若a,b,c,d∈R,則復(fù)數(shù)a+bi=c+di⇒a=c,b=d”類(lèi)比推出“若a,b,c,d∈Q,則a+b
2
=c+d
2
⇒a=c,b=d”;
③“若a,b∈R,則a-b>0⇒a>b”類(lèi)比推出“若a,b∈C,則a-b>0⇒a>b”;
其中類(lèi)比結(jié)論正確的命題是( 。
A、①B、①②
C、①②③D、全部都不對(duì)
考點(diǎn):類(lèi)比推理
專(zhuān)題:推理和證明
分析:在數(shù)集的擴(kuò)展過(guò)程中,有些性質(zhì)是可以傳遞的,但有些性質(zhì)不能傳遞,因此,要判斷類(lèi)比的結(jié)果是否正確,關(guān)鍵是要在新的數(shù)集里進(jìn)行論證,要想證明一個(gè)結(jié)論是錯(cuò)誤的,也可直接舉一個(gè)反例.
解答: 解:①在復(fù)數(shù)集C中,若兩個(gè)復(fù)數(shù)滿(mǎn)足a-b=0,則它們的實(shí)部和虛部均相等,則a,b相等.故①正確;
②在有理數(shù)集Q中,由a+b
2
=c+d
2
得,(a-c)+
2
(b-d)=0,易得:a=c,b=d.故②正確;
③在復(fù)數(shù)范圍內(nèi),a-b>0不能推出a>b,比如a=2+i,b=1+i,顯然有a-b=1>0成立,但a,b不能比較大小,故③錯(cuò)誤.
故選B.
點(diǎn)評(píng):本題考查類(lèi)比推理,涉及復(fù)數(shù)的運(yùn)算法則和性質(zhì),屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,-1),B(4,0),C(2,2).平面區(qū)域D由所有滿(mǎn)足
AP
AB
AC
(1<λ≤a,1<μ≤b)的點(diǎn)P(x,y)組成的區(qū)域.若區(qū)域D的面積為8,則a+b的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將一枚骰子先后擲兩次,向上點(diǎn)數(shù)之和為x,則x≥7的概率為(  )
A、
1
2
B、
5
12
C、
7
12
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,∠C=90°,BC=2,則
AB
BC
=( 。
A、2B、-4C、-2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題:若a+b+c為偶數(shù),則“自然a、b、c恰有一個(gè)偶數(shù)”時(shí)正確反設(shè)為(  )
A、a、b、c都是奇數(shù)
B、a、b、c都是偶數(shù)
C、a、b、c中至少有兩個(gè)偶數(shù)
D、a、b、c中或都是奇數(shù)或至少有兩個(gè)偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
2
=1的一個(gè)焦點(diǎn)為(2,0),則橢圓的長(zhǎng)軸長(zhǎng)是( 。
A、
6
B、2
2
C、4
D、2
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x2-4|-3x+m恰有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A、(-6,6)∪(
25
4
,+∞)
B、(
25
4
,+∞)
C、(-∞,-
25
4
)∪(-6,6)
D、(-
25
4
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線(xiàn)l經(jīng)過(guò)點(diǎn)P(2,1),且A(0,4)、B(4,8)兩點(diǎn)到直線(xiàn)l的距離相等,則直線(xiàn)l的方程是( 。
A、x-y-1=0
B、x-y-1=0或x-y-4=0
C、x+y-3=0
D、x-y-1=0或x=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三角形三邊所在直線(xiàn)方程分別為2x+y-12=0、3x-2y+10=0、x-4y+10=0.
(1)求表示三角形區(qū)域(含邊界)的不等式組,并畫(huà)出此區(qū)域(用陰影線(xiàn)條表示);
(2)若點(diǎn)P(x,y)在上述區(qū)域運(yùn)動(dòng),求z=x+2y的最大值和最小值,并求出相應(yīng)的x、y值.

查看答案和解析>>

同步練習(xí)冊(cè)答案