【題目】設(shè)函數(shù)f(x)=sin(2x+ )+tan cos2x.
(1)求f(x)的最小正周期及其圖象的對稱軸方程;
(2)求函數(shù)f(x)在區(qū)間(0, )上的值域.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為(t為參數(shù)),直線l2的參數(shù)方程為.設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時,P的軌跡為曲線C.
(1)寫出C的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ) =0,M為l3與C的交點(diǎn),求M的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,直線傾斜角是且過拋物線的焦點(diǎn),直線被拋物線截得的線段長是16,雙曲線: 的一個焦點(diǎn)在拋物線的準(zhǔn)線上,則直線與軸的交點(diǎn)到雙曲線的一條漸近線的距離是( )
A. 2 B. C. D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知| |=4,| |=8,| |=4 .
(1)計算:① ,②|4 ﹣2 |
(2)若( +2 )⊥(k ﹣ ),求實(shí)數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),向量 =(sinα,1), =(cosα,0), =(﹣sinα,2),點(diǎn)P是直線AB上的一點(diǎn),且 = .
(1)若O,P,C三點(diǎn)共線,求tanα的值;
(2)在(Ⅰ)條件下,求 +sin2α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對本市小學(xué)生課業(yè)負(fù)擔(dān)情況進(jìn)行了調(diào)查,設(shè)平均每人每天做作業(yè)的時間為x分鐘.有1000名小學(xué)生參加了此項(xiàng)調(diào)查,調(diào)查所得數(shù)據(jù)用程序框圖處理,若輸出的結(jié)果是680,則平均每天做作業(yè)的時間在0~60分鐘內(nèi)的學(xué)生的頻率是( )
A.680
B.320
C.0.68
D.0.32
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,且。
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),若存在極大值,且對于的一切可能取值, 的極大值均小于0,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的參數(shù)方程為 ( 為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),Ox軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)若直線l的極坐標(biāo)方程為 ,求直線l被曲線C截得的弦長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com