【題目】已知函數(shù),.

1)當(dāng)時,求的單調(diào)區(qū)間;

2)當(dāng)時,記函數(shù),若函數(shù)至少有三個零點,求實數(shù)的取值范圍

【答案】1)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;(2

【解析】

1)求導(dǎo)后,根據(jù)導(dǎo)函數(shù)的正負可確定函數(shù)的單調(diào)區(qū)間;

2)求得導(dǎo)函數(shù)的零點后,分別在、三種情況下,根據(jù)函數(shù)的單調(diào)性和最值確定零點的個數(shù),進而得到的范圍.

1)令,則當(dāng)時,

,令,解得:,

當(dāng)時,;當(dāng)時,;

的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;

2)當(dāng)時,,

,解得:,

①當(dāng),即時,

此時至多有兩個零點,不合題意;

②當(dāng),即時,,此時至多有兩個零點,不合題意;

③當(dāng),即時,

i)當(dāng)時,至多有兩個零點,不合題意;

(ⅱ)當(dāng)時,,

此時恰好有個零點;

iii)當(dāng)時,,

,

,則,,

此時有四個零點;

綜上所述:滿足條件的實數(shù)的取值集合為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,是雙曲線的左、右焦點,點P上異于頂點的點,直線l分別與以,為直徑的圓相切于A,B兩點,若向量的夾角為,則=___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,斜率為的直線交拋物線兩點,已知點的橫坐標(biāo)比點的橫坐標(biāo)大4,直線交線段于點,交拋物線于點

1)若點的橫坐標(biāo)等于0,求的值;

2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓的左、右頂點分別為A、B,右焦點為F,且點F滿足,由橢圓C的四個頂點圍成的四邊形面積為.過點的直線TA,TB與此橢圓分別交于點,其中,,

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)當(dāng)T在直線時,直線MN是否過x軸上的一定點?若是,求出該定點的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年末,武漢出現(xiàn)新型冠狀病毒(肺炎疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,目前沒有特異治療方法.防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從27日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和確診患者的密切接觸者等“四類”人員,強化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,某社區(qū)將本社區(qū)的排查工作人員分為,兩個小組,排查工作期間社區(qū)隨機抽取了100戶已排查戶,進行了對排查工作態(tài)度是否滿意的電話調(diào)查,根據(jù)調(diào)查結(jié)果統(tǒng)計后,得到如下的列聯(lián)表.

是否滿意

組別

不滿意

滿意

合計

16

34

50

2

45

50

合計

21

79

100

1)分別估計社區(qū)居民對組、組兩個排查組的工作態(tài)度滿意的概率;

2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認為“對社區(qū)排查工作態(tài)度滿意”與“排查工作組別”有關(guān)?

附表:

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等比數(shù)列中,已知設(shè)數(shù)列的前n項和為,且

1)求數(shù)列通項公式;

2)證明:數(shù)列是等差數(shù)列;

3)是否存在等差數(shù)列,使得對任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點作圓的切線,已知,分別為切點,直線恰好經(jīng)過橢圓的右焦點和下頂點,則直線方程為___________;橢圓的標(biāo)準(zhǔn)方程是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓錐的頂點為,底面圓心為,半徑為2,母線長為

1)求該圓錐的體積;

2)已知為圓錐底面的直徑,為底面圓周上一點,且,為線段的中點,求異面直線所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】人口平均預(yù)期壽命是綜合反映人們健康水平的基本指標(biāo).年第六次全國人口普查資料表明,隨著我國社會經(jīng)濟的快速發(fā)展,人民生活水平的不斷提高以及醫(yī)療衛(wèi)生保障體系的逐步完善,我國人口平均預(yù)期壽命繼續(xù)延長,國民整體健康水平有較大幅度的提高.下圖體現(xiàn)了我國平均預(yù)期壽命變化情況,依據(jù)此圖,下列結(jié)論錯誤的是(

A.男性的平均預(yù)期壽命逐漸延長

B.女性的平均預(yù)期壽命逐漸延長

C.男性的平均預(yù)期壽命延長幅度略高于女性

D.女性的平均預(yù)期壽命延長幅度略高于男性

查看答案和解析>>

同步練習(xí)冊答案