【題目】已知點(diǎn)Q是圓上的動(dòng)點(diǎn),點(diǎn),若線段QN的垂直平分線MQ于點(diǎn)P.

(I)求動(dòng)點(diǎn)P的軌跡E的方程

(II)若A是軌跡E的左頂點(diǎn),過(guò)點(diǎn)D(-3,8)的直線l與軌跡E交于B,C兩點(diǎn),求證:直線AB、AC的斜率之和為定值.

【答案】(Ⅰ) (Ⅱ)見(jiàn)證明

【解析】

)線段的垂直平分線交于點(diǎn)P,所以,則為定值,所以P的軌跡是以為焦點(diǎn)的橢圓,結(jié)合題中數(shù)據(jù)求出橢圓方程即可;()設(shè)出直線方程,聯(lián)立橢圓方程得到韋達(dá)定理,寫(xiě)出化簡(jiǎn)可得定值.

解:()由題可知,線段的垂直平分線交于點(diǎn)P,

所以,則,

所以P的軌跡是以為焦點(diǎn)的橢圓,

設(shè)該橢圓方程為,

,所以,

可得動(dòng)點(diǎn)P的軌跡E的方程為.

)由()可得,過(guò)點(diǎn)D的直線斜率存在且不為0,

故可設(shè)l的方程為,

由于直線過(guò)點(diǎn),所以,

所以(即為定值)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)多年的努力,炎陵黃桃在國(guó)內(nèi)乃至國(guó)際上逐漸打開(kāi)了銷路,成為炎陵部分農(nóng)民脫貧致富的好產(chǎn)品.為了更好地銷售,現(xiàn)從某村的黃桃樹(shù)上隨機(jī)摘下了100個(gè)黃桃進(jìn)行測(cè)重,其質(zhì)量分布在區(qū)間內(nèi)(單位:克),統(tǒng)計(jì)質(zhì)量的數(shù)據(jù)作出其頻率分布直方圖如圖所示:

(1)按分層抽樣的方法從質(zhì)量落在,的黃桃中隨機(jī)抽取5個(gè),再?gòu)倪@5個(gè)黃桃中隨機(jī)抽2個(gè),求這2個(gè)黃桃質(zhì)量至少有一個(gè)不小于400克的概率;

(2)以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該村的黃桃樹(shù)上大約還有100000個(gè)黃桃待出售,某電商提出兩種收購(gòu)方案:

A.所有黃桃均以20/千克收購(gòu);

B.低于350克的黃桃以5/個(gè)收購(gòu),高于或等于350克的以9/個(gè)收購(gòu).

請(qǐng)你通過(guò)計(jì)算為該村選擇收益最好的方案.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓 的離心率為,且過(guò)點(diǎn)

(I)求橢圓的標(biāo)準(zhǔn)方程;

(II)設(shè)點(diǎn),是橢圓上異于頂點(diǎn)的任意兩點(diǎn),直線,的斜率分別為,

①求的值;

②設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,試求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系 xOy 中,已知橢圓 C1(a>b>0)的離心率為,且過(guò)點(diǎn),點(diǎn)P在第四象限, A為左頂點(diǎn), B為上頂點(diǎn), PAy軸于點(diǎn)C,PBx軸于點(diǎn)D.

(1) 求橢圓 C 的標(biāo)準(zhǔn)方程;

(2) PCD 面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等腰RtABC中,∠BAC90°,腰長(zhǎng)為2,D、E分別是邊ABBC的中點(diǎn),將BDE沿DE翻折,得到四棱錐BADEC,且F為棱BC中點(diǎn),BA.

1)求證:EF⊥平面BAC;

2)在線段AD上是否存在一點(diǎn)Q,使得AF∥平面BEQ?若存在,求二面角QBEA的余弦值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知橢圓: 上動(dòng)點(diǎn)PQ,O為原點(diǎn);

(1)若,求證:為定值;

(2)點(diǎn),若,求證:直線過(guò)定點(diǎn);

(3)若,求證:直線為定圓的切線;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓Cx2+y2+2x4y+30

1)若直線lx+y0與圓C交于A,B兩點(diǎn),求弦AB的長(zhǎng);

2)從圓C外一點(diǎn)Px1y1)向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM||PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某教研部門(mén)對(duì)本地區(qū)甲、乙、丙三所學(xué)校高三年級(jí)進(jìn)行教學(xué)質(zhì)量抽樣調(diào)查,甲、乙、丙三所學(xué)校高三年級(jí)班級(jí)數(shù)量(單位:個(gè))如下表所示。研究人員用分層抽樣的方法從這三所學(xué)校中共抽取6個(gè)班級(jí)進(jìn)行調(diào)查.

學(xué)校

數(shù)量

4

12

8

(1)求這6個(gè)班級(jí)中來(lái)自甲、乙、丙三所學(xué)校的數(shù)量;

(2)若在這6個(gè)班級(jí)中隨機(jī)抽取2個(gè)班級(jí)做進(jìn)一步調(diào)查,

①列舉出所有可能的抽取結(jié)果;

②求這2個(gè)班級(jí)來(lái)自同一個(gè)學(xué)校的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】電子計(jì)算機(jī)誕生于20世紀(jì)中葉,是人類最偉大的技術(shù)發(fā)明之一.計(jì)算機(jī)利用二進(jìn)制存儲(chǔ)信息,其中最基本單位是“位(bit)”,1位只能存放2種不同的信息:0或l,分別通過(guò)電路的斷或通實(shí)現(xiàn).“字節(jié)(Byte)”是更大的存儲(chǔ)單位,1Byte=8bit,因此1字節(jié)可存放從00000000(2)至11111111(2)共256種不同的信息.將這256個(gè)二進(jìn)制數(shù)中,所有恰有相鄰兩位數(shù)是1其余各位數(shù)均是0的所有數(shù)相加,則計(jì)算結(jié)果用十進(jìn)制表示為

A. 254B. 381C. 510D. 765

查看答案和解析>>

同步練習(xí)冊(cè)答案