【題目】已知函數(shù),則下列判斷正確的是( )
A.為奇函數(shù)
B.對(duì)任意,,則有
C.對(duì)任意,則有
D.若函數(shù)有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(,且)是定義域?yàn)?/span>R的奇函數(shù).
(1)求t的值;
(2)若,求使不等式對(duì)一切恒成立的實(shí)數(shù)k的取值范圍;
(3)若函數(shù)的圖象過(guò)點(diǎn),是否存在正數(shù)m(),使函數(shù)在上的最大值為0,若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某網(wǎng)站的程序員中隨機(jī)抽取名統(tǒng)計(jì)其年齡數(shù)據(jù)如下表:
年齡 | 23 | 26 | 27 | 30 | 32 | 34 | 38 |
人數(shù) | 1 | 3 | 3 | 5 | 4 | 3 | 1 |
(1)求這名程序員的平均年齡及年齡的眾數(shù)、中位數(shù);
(2)若這名程序員中年齡不超過(guò)歲,且學(xué)歷是研究生及其以上有人,歲以上且學(xué)歷是本科及其以下有人,完成下面的列聯(lián)表,并判斷是否有%的把握認(rèn)為該網(wǎng)站程序員的學(xué)歷與年齡有關(guān).
年齡≤30 | 年齡>30 | |
學(xué)歷研究生及其以上 | ||
學(xué)歷本科及其以下 |
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P是拋物線C:上任意一點(diǎn),過(guò)點(diǎn)P作直線PH⊥x軸,點(diǎn)H為垂足.點(diǎn)M是直線PH上一點(diǎn),且在拋物線的內(nèi)部,直線l過(guò)點(diǎn)M交拋物線C于A、B兩點(diǎn),且點(diǎn)M是線段AB的中點(diǎn).
(1)證明:直線l平行于拋物線C在點(diǎn)P處切線;
(2)若|PM|=, 當(dāng)點(diǎn)P在拋物線C上運(yùn)動(dòng)時(shí),△PAB的面積如何變化?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知M,N是焦點(diǎn)為F的拋物線y2=2px(p>0)上兩個(gè)不同的點(diǎn),線段MN的中點(diǎn)A的橫坐標(biāo)為.
(1)求|MF|+|NF|的值;
(2)若p=2,直線MN與x軸交于點(diǎn)B,求點(diǎn)B的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正方形的邊長(zhǎng)為,已知,將沿邊折起,折起后點(diǎn)在平面上的射影為點(diǎn),則翻折后的幾何體中有如下描述:①與所成角的正切值為;②;③;④平面平面,其中正確的命題序號(hào)為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點(diǎn).
(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;
(Ⅲ)棱PB上是否存在點(diǎn)F,使得CF∥平面PAE?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓的左焦點(diǎn)為,過(guò)點(diǎn)的直線交橢圓于,兩點(diǎn),的最大值是,的最小值是,且滿(mǎn)足.
(1)求橢圓的離心率;
(2)設(shè)線段的中點(diǎn)為,線段的垂直平分線與軸、軸分別交于,兩點(diǎn),是坐標(biāo)原點(diǎn),記的面積為,的面積為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+c在x與x=1時(shí)都取得極值,求a,b的值與函數(shù)f(x)的單調(diào)區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com