【題目】無窮等差數(shù)列{an}的各項均為整數(shù),首項為a1、公差為d,Sn是其前n項和,3、21、15是其中的三項,給出下列命題:
①對任意滿足條件的d,存在a1 , 使得99一定是數(shù)列{an}中的一項;
②存在滿足條件的數(shù)列{an},使得對任意的n∈N* , S2n=4Sn成立;
③對任意滿足條件的d,存在a1 , 使得30一定是數(shù)列{an}中的一項.
其中正確命題的序號為(
A.①②
B.②③
C.①③
D.①②③

【答案】A
【解析】解:要使等差數(shù)列的公差最大,則3,15,21為相鄰的前n項和,
此時對應兩項為15﹣3=12,21﹣15=6,所以d≤6.
①99﹣21=78能被6整除,且 ,假設15和21之間有n項,
那么99和21之間有13n項,所以99一定是數(shù)列{an}中的一項,所以①正確.
②如果有S2n=4Sn , 那么由等差數(shù)列求和公式有:2na1+n(2n﹣1)d=4[na1+ ],
化簡得到,d=2a1 , 所以只要滿足條件d=2a1的數(shù)列{an},
就能使得對任意的n∈N* , S2n=4Sn成立,所以②正確.
③30﹣21=9不能被6整除,如果d=6,那么30一定不是數(shù)列{an}中的一項,所以③錯誤.
綜上可得:只有①②正確.
故選:A.
【考點精析】認真審題,首先需要了解等差數(shù)列的前n項和公式(前n項和公式:).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題: ①函數(shù)y=sin( ﹣2x)是偶函數(shù);
②方程x= 是函數(shù)y=sin(2x+ )的圖象的一條對稱軸方程;
③若α、β是第一象限角,且α>β,則sinα>sinβ;
④設x1、x2是關于x的方程|logax|=k(a>0,a≠1,k>0)的兩根,則x1x2=1;
其中正確命題的序號是 . (填出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)設,當時,,求的最大值;

(3)已知,估計的近似值(精確到0.001)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集為R,集合A={x| ≤0},集合B={x||2x+1|>3}.求A∩(RB).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于x的不等式 >1+ (其中k∈R,k≠0).
(1)若x=3在上述不等式的解集中,試確定k的取值范圍;
(2)若k>1時,上述不等式的解集是x∈(3,+∞),求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù), 已知曲線y=f(x)

處的切線與直線垂直。

(1) 的值;

(2) 若對任意x1,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知E、F、G、H為空間四邊形ABCD的邊AB、BC、CD、DA上的點,且EH∥FG.求證:
(1)EH∥面BCD;
(2)EH∥BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面內(nèi)三個向量: =(3,2), =(﹣1,2), =(4,1) (Ⅰ)若( +k )∥(2 ),求實數(shù)k的值;
(Ⅱ)設 =(x,y),且滿足( + )⊥( ),| |= ,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)設曲線軸正半軸的交點為,曲線在點處的切線方程為,

求證:對于任意的正實數(shù),都有;

(3)若方程為實數(shù))有兩個正實數(shù)根,求證: .

查看答案和解析>>

同步練習冊答案