【題目】已知函數(shù)的圖象在軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為.若將函數(shù)的圖象向左平移個(gè)單位長度后得到的圖象關(guān)于原點(diǎn)對稱.

(1)求函數(shù)的解析式;

(2)若函數(shù)的周期為,當(dāng)時(shí),方程恰有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.

【答案】(1);(2)

【解析】

(1)由題意可知函數(shù)的周期,且,再結(jié)合函數(shù)圖像的平移變換后圖像關(guān)于原點(diǎn)對稱,可得,結(jié)合,運(yùn)算可得函數(shù)解析式;

(2)由(1)可得,令,當(dāng)上有兩個(gè)不同的解,則,又,即可得實(shí)數(shù)的范圍.

(1)由題意可知函數(shù)的周期,且,所以,故.將函數(shù)的圖象向左平移個(gè)單位長度后得到的圖象對應(yīng)的函數(shù)解析式為,因?yàn)楹瘮?shù)的圖象關(guān)于原點(diǎn)對稱,所以,即.

,所以,故.

(2)由(1)得函數(shù),其周期為,

,所以.,因?yàn)?/span>,所以,

上有兩個(gè)不同的解,則,

所以當(dāng)時(shí),方程上恰有兩個(gè)不同的解,即實(shí)數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是橢圓上的兩點(diǎn),已知向量,,若且橢圓的離心率,短軸長為2,為坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2)若直線過橢圓的焦點(diǎn)為半焦距),求直線的斜率的值;

(3)試問:的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系. 直線的極坐標(biāo)方程是.

(Ⅰ)求圓的極坐標(biāo)方程和直線的直角坐標(biāo)方程;

(Ⅱ)射線與圓的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)設(shè),求的值;

(2)已知cos(75°+α),且﹣180°<α<﹣90°,求cos(15°﹣α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究機(jī)構(gòu)對高三學(xué)生的記憶力和判斷力進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù):

6

8

10

12

2

3

5

6

(1)請?jiān)趫D中畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測記憶力為9的同學(xué)的判斷力.

相關(guān)公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為的菱形,,的中點(diǎn),的中點(diǎn),點(diǎn)在線段上,且

(1)求證:平面;

(2)若平面底面ABCD,且,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“克拉茨猜想”又稱“猜想”,是德國數(shù)學(xué)家洛薩克拉茨在1950年世界數(shù)學(xué)家大會上公布的一個(gè)猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半;如果為奇數(shù)就將它乘3加1,不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,最終都能夠得到1.己知正整數(shù)經(jīng)過6次運(yùn)算后得到1,則的值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠,兩條相互獨(dú)立的生產(chǎn)線生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下通過日常監(jiān)控得知,生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率分別為.

(1)從,生產(chǎn)線上各抽檢一件產(chǎn)品,若使得至少有一件合格的概率不低于,求的最小值.

(2)假設(shè)不合格的產(chǎn)品均可進(jìn)行返工修復(fù)為合格品,以(1)中確定的作為的值.

①已知生產(chǎn)線的不合格產(chǎn)品返工后每件產(chǎn)品可分別挽回?fù)p失元和元。若從兩條生產(chǎn)線上各隨機(jī)抽檢件產(chǎn)品,以挽回?fù)p失的平均數(shù)為判斷依據(jù),估計(jì)哪條生產(chǎn)線挽回的損失較多?

②若最終的合格品(包括返工修復(fù)后的合格品)按照一、二、三等級分類后,每件分別獲利元、元、元,現(xiàn)從,生產(chǎn)線的最終合格品中各隨機(jī)抽取件進(jìn)行檢測,結(jié)果統(tǒng)計(jì)如下圖;用樣本的頻率分布估計(jì)總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤為,求的分布列并估算該廠產(chǎn)量件時(shí)利潤的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在區(qū)間上的函數(shù)yf(x)的圖象關(guān)于直線x=-對稱,當(dāng)x∈時(shí),函數(shù)f(x)Asin(ωxφ)的圖象如圖所示.

(1)求函數(shù)yf(x)上的表達(dá)式;

(2)求方程f(x)的解.

查看答案和解析>>

同步練習(xí)冊答案