焦點在上的拋物線的標(biāo)準(zhǔn)方程為(      )
A.B.C.D.
B
由題意知,拋物線的焦點坐標(biāo)為,故其標(biāo)準(zhǔn)方程為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)已知直線>0交拋物線C:=2>0于A、B兩點,M是線段AB的中點,過M作軸的垂線交C于點N.

(1)若直線過拋物線C的焦點,且垂直于拋物線C的對稱軸,試用表示|AB|;
(2)證明:過點N且與AB平行的直線和拋物線C有且僅有一個公共點;
(3)是否存在實數(shù),使=0.若存在,求出的所有值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,設(shè)點(1,0),直線:,點在直線上移動,是線段軸的交點, .
(Ⅰ)求動點的軌跡的方程;
(Ⅱ) 記的軌跡的方程為,過點作兩條互相垂直的曲線的弦、,設(shè)、 的中點分別為.求證:直線必過定點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

 設(shè)拋物線的準(zhǔn)線與軸交點為,過點 作直線交拋物線與不同的點兩點.
(1)求線段中點的軌跡方程;
(2)若線段的垂直平分線交拋物線對稱軸與,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的焦點在x軸上,直線y=2x+1被拋物線截得的線段長為,求此拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),分別為軸、軸上的點,且,動點滿足:.
(1)求動點的軌跡的方程;
(2)過定點任意作一條直線與曲線交與不同的兩點、,問在軸上是否存在一定點,使得直線的傾斜角互補?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)P1P2是拋物線x2=y的弦,P1P2的中垂線l的方程為y=-x+3,則P1P2所在直線方程為_________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若拋物線的頂點在坐標(biāo)原點,焦點是橢圓的一個焦點,則此拋物線的焦點到準(zhǔn)線的距離是     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,過定點作直線與拋物線相交于兩點.若點是點關(guān)于坐標(biāo)原點的對稱點,則面積的最小值為        

查看答案和解析>>

同步練習(xí)冊答案