【題目】如圖,在五面體中,已知平面,,,

1)求證:;

2)求三棱錐的體積.

【答案】1)詳見解析,(2

【解析】

試題分析:(1)證明線線平行,一般思路為利用線面平行的性質(zhì)定理與判定定理進(jìn)行轉(zhuǎn)化. 因?yàn)?/span>,平面,平面,所以平面,又平面,平面平面,所以.(2)求三棱錐的體積,關(guān)鍵是找尋高.可由面面垂直性質(zhì)定理探求,因?yàn)?/span>平面,所以有面平面,則作就可得平面.證明平面過程也可從線線垂直證線面垂直.確定是三棱錐的高之后,可利用三棱錐的體積公式.

試題解析:

1)因?yàn)?/span>平面,平面

所以平面, 3

平面,平面平面

所以6

2)在平面內(nèi)作于點(diǎn),

因?yàn)?/span>平面,平面,所以,

,平面,

所以平面

所以是三棱錐的高. 9

在直角三角形中,,,所以,

因?yàn)?/span>平面,平面,所以,

又由(1)知,,且,所以,所以12

所以三棱錐的體積14

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是cm2 , 體積是cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD,E,F分別是CD,AD的中點(diǎn),BE,CF交于點(diǎn)P.求證

(1)BECF;

(2)AP=AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)分別為橢圓的左右兩個(gè)焦點(diǎn).

(1)若橢圓上的點(diǎn)兩點(diǎn)的距離之和等于4,寫出橢圓的方程和焦點(diǎn)坐標(biāo);

(2)設(shè)點(diǎn)是(1)中所得橢圓上的動(dòng)點(diǎn),求線段的中點(diǎn)的軌跡方程;

(3)已知橢圓具有性質(zhì):如果是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)是橢圓上任意一點(diǎn),當(dāng)直線的斜率都存在,并記為時(shí),那么之積是與點(diǎn)位置無關(guān)的定值,請(qǐng)給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某設(shè)備的使用年數(shù)x與所支出的維修總費(fèi)用y的統(tǒng)計(jì)數(shù)據(jù)如下表:

使用年數(shù)x(單位:年)

2

3

4

5

6

維修費(fèi)用y(單位:萬元)

1.5

4.5

5.5

6.5

7.0

根據(jù)上標(biāo)可得回歸直線方程為 =1.3x+ ,若該設(shè)備維修總費(fèi)用超過12萬元,據(jù)此模型預(yù)測(cè)該設(shè)備最多可使用年.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列說法:①若,,則;②若2=,分別表示的面積,則;③兩個(gè)非零向量,若||=||+||,則共線且反向;④若,則存在唯一實(shí)數(shù)使得,其中正確的說法個(gè)數(shù)為()

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓方程為,它的一個(gè)頂點(diǎn)為,離心率.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于, 兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為80,則判斷框內(nèi)應(yīng)填入(
A.n≤8?
B.n>8?
C.n≤7?
D.n>7?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的函數(shù),其導(dǎo)函數(shù).

(1)如果函數(shù)x=1處有極值試確定b、c的值;

(2)設(shè)當(dāng)時(shí),函數(shù)圖象上任一點(diǎn)P處的切線斜率為k,若,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案