(本題12分)在直角梯形PBCD中,,A為PD的中點,如下左圖。將沿AB折到的位置,使,點E在SD上,且,如下圖。

(1)求證:平面ABCD;
(2)求二面角E—AC—D的正切值.

(1)證明思路,為正方形,,
因為,ABBC,所以BC平面SAB,推出SA平面ABCD,
(2)

解析試題分析:(1)證明:在圖中,由題意可知,

為正方形,所以在圖中,
四邊形ABCD是邊長為2的正方形,
因為,ABBC,
所以BC平面SAB,
平面SAB,所以BCSA,又SAAB,
所以SA平面ABCD,
(2)解法一: 在AD上取一點O,使,連接EO。
因為,所以EO//SA
所以EO平面ABCD,過O作OHAC交AC于H,連接EH,
則AC平面EOH,所以ACEH。
所以為二面角E—AC—D的平面角,
中,
,即二面角E—AC—D的正切值為
解法二:如圖,以A為原點建立直角坐標(biāo)系,

 
易知平面ACD的法向為
設(shè)平面EAC的法向量為
 
,所以,可取
所以
所以
所以,即二面角E—AC—D的正切值為
考點:本題主要考查立體幾何中的垂直關(guān)系,角的計算。
點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用向量則能簡化證明過程。本題解答利用兩種解法作答,各有所長。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面為直角梯形,且,,側(cè)面底面. 若.

(Ⅰ)求證:平面
(Ⅱ)側(cè)棱上是否存在點,使得平面?若存在,指出點 的位置并證明,若不存在,請說明理由;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)
如圖,在中,邊上的高,,沿翻折,使得得幾何體

(Ⅰ)求證:
(Ⅱ)求點D到面ABC的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
如圖,在底面是直角梯形的四棱錐S-ABCD中, 


(1)求四棱錐S-ABCD的體積;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在中,點的中點,點的中點,的延長線交與點。

(1)求的值;
(2)若的面積為,四邊形的面積為,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)如圖,在多面體ABCDE中,,,是邊長為2的等邊三角形,,CD與平面ABDE所成角的正弦值為.

(1)在線段DC上是否存在一點F,使得,若存在,求線段DF的長度,若不存在,說明理由;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
如圖,在棱長為3的正方體中,.

⑴求兩條異面直線所成角的余弦值;
⑵求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,底面為直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分別為PC,PB的中點.(1)求證:PB⊥DM;(2)求CD與平面ADMN所成角的正弦值;(3)在棱PD上是否存在點E,且PE∶ED=λ,使得二面角C-AN-E的平面角為60o.若存在求出λ值,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分16分)如圖:AD=2,AB=4的長方形所在平面與正所在平面互相垂直,分別為的中點.

(1)求四棱錐-的體積;
(2)求證:平面;
(3)試問:在線段上是否存在一點,使得平面平面?若存在,試指出點的位置,并證明你的結(jié)論;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案