函數(shù)f(x)=(
1
3
)
6+x-x2
的定義域?yàn)镸,函數(shù)g(x)=4x-2x+1(x∈M)
(1)求M;    
(2)求函數(shù)f(x)的單調(diào)區(qū)間(直接寫出答案);
(3)求函數(shù)g(x)的值域.
分析:(1)利用被開方數(shù)大于大于0,可求函數(shù)的定義域;
(2)利用指數(shù)函數(shù)單調(diào)減,結(jié)合二次函數(shù)的單調(diào)性,可得結(jié)論;
(3)利用換元法,轉(zhuǎn)化為二次函數(shù),即可求函數(shù)g(x)的值域.
解答:解:(1)由6+x-x2≥0,可得-2≤x≤3,∴函數(shù)定義域M為[-2,3];
(2)單調(diào)遞減區(qū)間為[-2,
1
2
)
,單調(diào)遞增區(qū)間為[
1
2
,3]

(3)令t=2x
1
4
<t<8),則
∵g(x)=4x-2x+1,
∴y=t2-2t=(t-1)2-1
1
4
<t<8
∴t=1時(shí),ymin=-1;t=8時(shí),ymax=48
∴函數(shù)g(x)的值域?yàn)閇-1,48]
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性,考查函數(shù)的定義域,考查函數(shù)的最值,考查學(xué)生分析轉(zhuǎn)化問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=(
1
3
)x-log2x
,若實(shí)數(shù)x0是函數(shù)的零點(diǎn),且0<x1<x0,則f(x1)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(
13
)x-log2x
,正實(shí)數(shù)a、b、c成公差為正數(shù)的等差數(shù)列,且滿足f(a)f(b)f(c)<0,若實(shí)數(shù)d是方程f(x)=0的一個(gè)解,那么下列四個(gè)判斷:①d<a;②d>b;③d<c;④d>c中,有可能成立的個(gè)數(shù)為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x)=
13
|x|3-ax2+(2-a)|x|+b
,若f(x)有六個(gè)不同的單調(diào)區(qū)間,則a的取值范圍為
(1,2)
(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
,則f′(x)等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
(
1
3
)
x
-8(x<0)
x
(x≥0)
,若f(a)>1,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案