在△ABC中,若a、b、c分別是角A、B、C所對的邊長,已知A=
π
3
,b=1,△ABC的面積S△ABC=
3
,求△ABC外接圓面積S的值.
分析:根據(jù)面積公式列出關(guān)系式,將已知條件代入求出c的值,再利用余弦定理列出關(guān)系式,將b,c及cosA的值代入求出a的值,設(shè)三角形ABC外接圓半徑為R,利用正弦定理求出R的值,進而求出外接圓面積S.
解答:解:∵A=
π
3
,b=1,S△ABC=
3
,
1
2
bcsinA=
1
2
×1×c×
3
2
=
3

解得:c=4,
由余弦定理得a2=b2+c2-2bccosA=1+16-2×1×4×
1
2
=13,即a=
13

設(shè)△ABC的外接圓的半徑為R,由正弦定理得2R=
a
sinA
=
13
3
2
=
2
39
3

則R=
39
3
,S=πR2=π×
39
9
=
13π
3
點評:此題考查了正弦、余弦定理,三角形的面積公式,以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出命題:
①函數(shù)y=2sinx-cosx的值域是[-2,1];
②函數(shù)y=sinπxcosπx是周期為2的奇函數(shù);
x=-
3
4
π
是函數(shù)y=sin(x+
π
4
)
的一條對稱軸;
④若sin2α<0,cosα-sinα<0,則α一定為第二象限角;
⑤在△ABC中,若A>B則sinA>sinB.
其中正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若a=7,b=3,c=8,則其面積等于( 。
A、12
B、
21
2
C、28
D、6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若∠A=60°,∠B=45°,BC=
2
,則AC=
2
3
3
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題的個數(shù)為( 。
(1)在△ABC中,若A>B,則sinA>sinB;
(2)已知
AB
=(3,4),
CD
=(-2,-1)
,則
AB
CD
上的投影為-2;
(3)已知p:?x∈R,cosx=1,q:?x∈R,x2-x+1>0,則“p∧¬q”為假命題;
(4)已知函數(shù)f(x)=sin(ωx+
π
6
)-2
(ω>0)的導(dǎo)函數(shù)的最大值為3,則函數(shù)f(x)的圖象關(guān)于x=
π
3
對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α為銳角,且tanα=
2
-1
,函數(shù)f(x)=2xtan2α+sin(2α+
π
4
)
,數(shù)列{an}的首項a1=1,an+1=f(an).
(1)求函數(shù)f(x)的表達(dá)式;
(2)在△ABC中,若∠A=2α,∠C=
π
3
,BC=2,求△ABC的面積
(3)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案