已知函數(shù)f(x)=
1
3
x3-x2+ax-a(a∈R).
(1)當(dāng)a=-3時(shí),求函數(shù)f(x)的極值;
(2)若a≤1,求函數(shù)的單調(diào)區(qū)間.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)極值的定義,先對(duì)原函數(shù)求導(dǎo)數(shù),然后令導(dǎo)函數(shù)等于0,求出方程的解,再根據(jù)極值的定義看在所求的點(diǎn)處能否取到極值,是極大值還是極小值.對(duì)于第二問(wèn),先對(duì)函數(shù)f(x)求導(dǎo),然后求得f′(x)>0,和f′(x)<0的解,在這注意討論a的取值.
解答: 解:(1)f(x)=
1
3
x3-x2-3x+3
,所以f′(x)=x2-2x-3.
∴解x2-2x-3=0,得:x=-1或x=3,所以
x∈(-∞,-1)時(shí),f′(x)>0;
x∈(-1,3)時(shí),f′(x)<0;
x∈(3,+∞)時(shí),f′(x)>0.
根據(jù)極值的定義知:x=-1時(shí),f(x)取到極大值f(-1)=
14
3
;x=3時(shí),f(x)取到極小值f(3)=-6.
(2)f′(x)=x2-2x+a=(x-1)2+a-1,∵a≤1,∴a-1≤0
∴若a-1=0,即a=1時(shí)f′(x)≥0,所以(-∞,+∞)是f(x)的單調(diào)增區(qū)間;
若a<1時(shí),解(x-1)2+a-1=0得:x=1±
1-a
,所以:
x∈(-∞,1-
1-a
)時(shí),f′(x)>0,∴(-∞,1-
1-a
)是f(x)的單調(diào)增區(qū)間;
x∈(1-
1-a
,1+
1-a
)時(shí),f′(x)<0,∴[1-
1-a
,1+
1-a
]是f(x)的單調(diào)減區(qū)間;
x∈(1+
1-a
,+∞)時(shí),f′(x)>0,∴(1+
1-a
,+∞
)是f(x)的單調(diào)增區(qū)間.
點(diǎn)評(píng):考查極值的定義,只要理解極值的定義,第一問(wèn)不難解出.第二問(wèn)要注意一下討論a的取值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

菱形ABCD邊長(zhǎng)為2,∠BAD=60°,將ABCD沿對(duì)角線BD折疊,使得平面ABD⊥平面CBD,AE⊥平面ABD,且AE=
3

(1)求證:DE⊥AC;
(2)求證:直線BE上是否存在一點(diǎn)M,使得CM∥平面ADE,若存在,求點(diǎn)M的位置,不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a1=2,點(diǎn)(an,an+1)在函數(shù)f(x)=x2+2x的圖象上,其中n=1,2,3…
(1)證明數(shù)列{lg(1+an)}是等比數(shù)列
(2)設(shè)Tn=(1+a1)(1+a2)…(1+an),求Tn及數(shù)列{an}的通項(xiàng)
(3)記bn=
1
an
+
1
an+2
,設(shè)數(shù)列{bn}的前n項(xiàng)和Sn,證明
3
4
Sn
<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有甲、乙、丙、丁、戊5位同學(xué),求:
(1)5位同學(xué)站成一排,有多少種不同的方法?
(2)5位同學(xué)站成一排,要求甲乙必須相鄰,丙丁不能相鄰,有多少種不同的方法?
(3)將5位同學(xué)分配到三個(gè)班,每班至少一人,共有多少種不同的分配方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3-
3
2
(a+2)x2+6x+b在x=2處取得極值

(Ⅰ)求a的值及f(x)的單調(diào)區(qū)間
(Ⅱ)?x∈[0,3]使f(x)<b2,求b的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,若
AB
AC
=12,a=2,∠A=30°,求b,c(b<c).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
,寫出n=1,2,3,4的值,歸納并猜想出結(jié)果,你能證明你的結(jié)論嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知P為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)右支上的一點(diǎn),F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點(diǎn),圓C為三角形PF1F2的內(nèi)切圓,求圓C的圓心的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的偶函數(shù)f(x)滿足f(x-4)=f(x),且在區(qū)間[0,2]上f(x)=x.若關(guān)于x的方程f(x)=logax有三個(gè)不同的根,則a的范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案