【題目】若數(shù)列同時滿足條件:①存在互異的使得(為常數(shù));
②當且時,對任意都有,則稱數(shù)列為雙底數(shù)列.
(1)判斷以下數(shù)列是否為雙底數(shù)列(只需寫出結(jié)論不必證明);
①; ②; ③
(2)設,若數(shù)列是雙底數(shù)列,求實數(shù)的值以及數(shù)列的前項和;
(3)設,是否存在整數(shù),使得數(shù)列為雙底數(shù)列?若存在,求出所有的的值;若不存在,請說明理由.
【答案】(1) ①③是雙底數(shù)列,②不是雙底數(shù)列(2) (3)存在整數(shù)或,使得數(shù)列為雙底數(shù)列
【解析】試題分析:(1)根據(jù)雙底數(shù)列的定義可判定①③是雙底數(shù)列,②不是雙底數(shù)列;(2)由雙底數(shù)列定義可知,解得, 當時,數(shù)列成等差, ,當時, ,從而可得結(jié)果;(3), 若數(shù)列是雙底數(shù)列,則有解(否則不是雙底數(shù)列),即 ,該方程共有四組解,分別驗證是否為雙底數(shù)列即可得結(jié)果.
試題解析:(1)①③是雙底數(shù)列,②不是雙底數(shù)列;
(2)數(shù)列當時遞減,當時遞增,
由雙底數(shù)列定義可知,解得,
當時,數(shù)列成等差, ,
當時, ,
綜上, .
(3),
,
若數(shù)列是雙底數(shù)列,則有解(否則不是雙底數(shù)列),
即 ,
得或或或
故當時, ,
當時, ;當時, ;當時, ;
從而 ,數(shù)列不是雙底數(shù)列;
同理可得:
當時, ,數(shù)列不是雙底數(shù)列;
當時, ,數(shù)列是雙底數(shù)列;
當時, ,數(shù)列是雙底數(shù)列;
綜上,存在整數(shù)或,使得數(shù)列為雙底數(shù)列.
科目:高中數(shù)學 來源: 題型:
【題目】中國詩詞大會的播出引發(fā)了全民讀書熱,某學校語文老師在班里開展了一次詩詞默寫比賽,班里40名學生得分數(shù)據(jù)的莖葉圖如右圖,若規(guī)定得分不低于85分的學生得到“詩詞達人”的稱號,低于85分且不低于70分的學生得到“詩詞能手”的稱號,其他學生得到“詩詞愛好者”的稱號.根據(jù)該次比賽的成績按照稱號的不同進行分層抽樣抽選10名學生,則抽選的學生中獲得“詩詞能手”稱號的人數(shù)為( 。
A. 6B. 5C. 4D. 2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙兩地相距海里,某貨輪勻速行駛從甲地運輸貨物到乙地,運輸成本包括燃料費用和其他費用.已知該貨輪每小時的燃料費與其速度的平方成正比,比例系數(shù)為,其他費用為每小時元,且該貨輪的最大航行速度為海里/小時.
()請將該貨輪從甲地到乙地的運輸成本表示為航行速度(海里/小時)的函數(shù).
()要使從甲地到乙地的運輸成本最少,該貨輪應以多大的航行速度行駛?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)f(x)=sin 2x+cos 2x圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將圖象上所有點向右平移個單位長度,得到函數(shù)g(x)的圖象,則g(x)圖象的一條對稱軸方程是( )
A. x=- B. x=
C. x= D. x=
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的正四棱柱的底面邊長為,側(cè)棱,點在棱上,
且 ().
(1)當時,求三棱錐的體積;
(2)當異面直線與所成角的大小為時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4,M為AA1的中點,P是BC上的一點,且由P沿棱柱側(cè)面經(jīng)過棱CC1到M的最短路線長為,設這條最短路線與CC1的交點為N.求:
(1)該三棱柱的側(cè)面展開圖的對角線的長;
(2)PC和NC的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線: 經(jīng)過伸縮變換后得到曲線.以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求出曲線、的參數(shù)方程;
(Ⅱ)若、分別是曲線、上的動點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是BC、CD的中點,G是EF的中點,現(xiàn)在沿AE、AF及EF把這個正方形折成一個空間圖形,使B、C、D三點重合,重合后的點記為H,那么,在這個空間圖形中必有( 。
A. 所在平面B. 所在平面
C. 所在平面D. 所在平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐P–ABCD中,底面ABCD是邊長為6的正方形,PD平面ABCD,PD=8.
(1) 求PB與平面ABCD所成角的大;
(2) 求異面直線PB與DC所成角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com