【題目】已知函數(shù)為奇函數(shù)
(1)比較的大小,并說明理由.(提示: )
(2)若,且對恒成立,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】試題分析:(1)由于函數(shù)為奇函數(shù), ,求得, 為減函數(shù),通過計算證得,所以;(2)利用函數(shù)的奇偶性,化簡原不等式為,根據(jù)單調(diào)性和定義域,列不等式,分離參數(shù)求得參數(shù)的取值范圍.
試題解析:
(1)∵函數(shù)為奇函數(shù),
∴,∴,∴,對恒成立,∴,
∴...............2分
∵,
∴...................................4分
又,
∴................................6分
∵在上遞減,∴.............7分
(2)由為奇函數(shù)可得,
∵,∴,
又在上遞減,
∴即對恒成立,
∵在上遞增,∴,又,∴..........12分
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是上的偶函數(shù).
(1)求實數(shù)的值;
(2)判斷并證明函數(shù)在上單調(diào)性;
(3)求函數(shù)在上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了了解一年內(nèi)的用水情況,抽取了10天的用水量如下表所示:
天數(shù) | 1 | 1 | 1 | 2 | 2 | 1 | 2 |
用水量/噸 | 22 | 38 | 40 | 41 | 44 | 50 | 95 |
(Ⅰ)在這10天中,該公司用水量的平均數(shù)是多少?每天用水量的中位數(shù)是多少?
(Ⅱ)你認為應該用平均數(shù)和中位數(shù)中的哪一個數(shù)來描述該公司每天的用水量?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量.
(1)若分別表示將一枚質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時第一次、第二次出現(xiàn)的點數(shù),求滿足的概率;
(2)若在連續(xù)區(qū)間上取值,求滿足的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,圓的參數(shù)方程為為參數(shù)),在以原點為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.
(1)求圓的普通方程和直線的直角坐標方程;
(2)設(shè)直線與軸,軸分別交于兩點,點是圓上任一點,求兩點的極坐標和面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程
已知平面直角坐標系,以為極點,軸的非負半軸為極軸建立極坐標系,點的極坐標為,曲線的參數(shù)方程為(為參數(shù)).
(1)寫出點的直角坐標及曲線的直角坐標方程;
(2)若為曲線上的動點,求中點到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線:,半徑為2的圓與相切,圓心在軸上且在直線的右上方.
(1)求圓的方程;
(2)若直線過點且與圓交于,兩點(在軸上方,在軸下方),問在軸正半軸上是否存在定點,使得軸平分?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com