精英家教網 > 高中數學 > 題目詳情

如圖,直三棱柱(側棱垂直于底面的棱柱),底面,棱,分別為的中點.

(1)求>的值;
(2)求證: 

(1)>的值為;(2)證明過程詳見試題解析.

解析試題分析:(1)先以C為原點建立空間坐標系,由已知易求出,進而可求 >的值;
(2)由(1)所建立的空間坐標系可寫出、的坐標表示,即可知,從而得證.
試題解析:以C為原點,CA、CB、CC1所在的直線分別為軸、軸、軸,建立坐標系
(1)依題意得,∴
  ,
>=              6分
(2) 依題意得 ∴ ,
,,
∴  ,
∴ ,      ∴ 
                               12分
考點:空間坐標系、線面垂直的判定方法.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,已知在四棱錐中,底面是矩形,平面,的中點,是線段上的點.

(1)當的中點時,求證:平面;
(2)要使二面角的大小為,試確定點的位置.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示,在多面體ABCD-A1B1C1D1中,上、下兩個底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.

(1)求異面直線AB1與DD1所成角的余弦值;
(2)已知F是AD的中點,求證:FB1⊥平面BCC1B1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,三棱柱中,△ABC是正三角形,,平面平面.

(1)證明:;
(2)證明:求二面角的余弦值;
(3)設點是平面內的動點,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示,在多面體ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFGBAAC,EDDGEFDG,且AC=1,ABEDEF=2,ADDG=4.
 
(1)求證:BE⊥平面DEFG;
(2)求證:BF∥平面ACGD
(3)求二面角FBCA的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在直三棱柱ABCA1B1C1中,DE分別是ABBB1的中點,AA1ACCBAB.
 
(1)證明:BC1∥平面A1CD;
(2)求二面角DA1CE的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在矩形ABCD中,AB=2AD=2,OCD的中點,沿AO將△AOD折起,使DB.

(1)求證:平面AOD⊥平面ABCO
(2)求直線BC與平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,邊長為2的正方形中,點的中點,點的中點,將△、△分別沿折起,使、兩點重合于點,連接,

(1)求證:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知正四棱錐P-ABCD的所有棱長都是2,底面正方形兩條對角線相交于O點,M是側棱PC的中點.

(1)求此正四棱錐的體積.
(2)求直線BM與側面PAB所成角θ的正弦值.

查看答案和解析>>

同步練習冊答案