【題目】如圖:已知拋物線 C1:y2=2px (p>0),直線 l 與拋物線 C 相交于 A、B 兩點,且當(dāng)傾斜角為 60°的直線 l 經(jīng)過拋物線 C1 的焦點 F 時,有|AB|= .
(Ⅰ)求拋物線 C 的方程;
(Ⅱ)已知圓 C2:(x﹣1)2+y2= ,是否存在傾斜角不為 90°的直線 l,使得線段 AB 被圓 C2截成三等分?若存在,求出直線 l 的方程;若不存在,請說明理由.
【答案】解:(Ⅰ)當(dāng)直線l的傾斜角為60°時,直線l的方程為y= (x﹣ ),
聯(lián)立方程組 ,消元得3x2﹣5px+ =0,
∴|AB|= +p= ,解得p= ,
∴拋物線C的方程為y2= .
(Ⅱ)假設(shè)存在直線l,使得AB被圓C2三等分,設(shè)直線l與圓C2的交點為C,D,
設(shè)直線l的方程為x=my+b,A(x1,y1),B(x2,y2),
聯(lián)立方程組 ,得4y2﹣my﹣b=0,
∴y1+y2= ,y1y2=﹣ ,∴x1+x2=m(y1+y2)+2b= +2b,
∴AB的中點坐標(biāo)為M( +b, ),
又圓C2的圓心為C2(1,0),∴k = ,
即m2+8b﹣7=0,∴b= .
又|AB|= = .
∵圓心C2(1,0)到直線l的距離d= ,圓C2的半徑為 ,
∴|CD|=2 = ,
又|AB|= = .C,D為AB的三等分點,
∴|AB|=3|CD|,
∴ = ,解得m=± ,∴b= .
∴直線l的方程為y=± x+
【解析】(I)聯(lián)立方程組,利用根與系數(shù)的關(guān)系和拋物線的性質(zhì)列方程解出p;(II)設(shè)直線l方程為x=my+b,與拋物線方程聯(lián)立,求出AB的中點坐標(biāo),利用垂徑定理列方程得出m,b的關(guān)系,利用弦長公式計算|AB|,|CD|,根據(jù)|AB|=3|CD|列方程求出m得出直線l的方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點O為坐標(biāo)原點,橢圓E: (a≥b>0)的右頂點為A,上頂點為B,過點O且斜率為 的直線與直線AB相交M,且 .
(Ⅰ)求橢圓E的離心率e;
(Ⅱ)PQ是圓C:(x﹣2)2+(y﹣1)2=5的一條直徑,若橢圓E經(jīng)過P,Q兩點,求橢圓E的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°.
(1)證明:平面ADB⊥平面BDC;
(2)若BD=1,求三棱錐D-ABC的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的兩條對角線相交于點M(2,0),AB邊所在直線的方程為x-3y-6=0,點T(-1,1)在AD邊所在的直線上.
(1)求AD邊所在直線的方程;
(2)求矩形ABCD外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四面體P﹣ABC中,點M是棱PC的中點,點N是線段AB上一動點,且 ,設(shè)異面直線 NM 與 AC 所成角為α,當(dāng) 時,則cosα的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知菱形 ABCD 中,對角線 AC 與 BD 相交于一點 O,∠A=60°,將△BDC 沿著 BD 折起得△BDC',連結(jié) AC'.
(Ⅰ)求證:平面 AOC'⊥平面 ABD;
(Ⅱ)若點 C'在平面 ABD 上的投影恰好是△ABD 的重心,求直線 CD 與底面 ADC'所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國的高鐵技術(shù)發(fā)展迅速,鐵道部門計劃在兩城市之間開通高速列車,假設(shè)列車在試運(yùn)行期間,每天在兩個時間段內(nèi)各發(fā)一趟由城開往城的列車(兩車發(fā)車情況互不影響),城發(fā)車時間及概率如下表所示:
發(fā)車 時間 | ||||||
概率 |
若甲、乙兩位旅客打算從城到城,他們到達(dá)火車站的時間分別是周六的和周日的(只考慮候車時間,不考慮其他因素).
(1)設(shè)乙候車所需時間為隨機(jī)變量(單位:分鐘),求的分布列和數(shù)學(xué)期望;
(2)求甲、乙兩人候車時間相等的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知n∈N* , Sn=(n+1)(n+2)…(n+n), .
(Ⅰ)求 S1 , S2 , S3 , T1 , T2 , T3;
(Ⅱ)猜想Sn與Tn的關(guān)系,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com