【題目】已知袋子中放有大小和形狀相同標(biāo)號(hào)分別是0,1,2的小球若干,其中標(biāo)號(hào)為0的小球1個(gè),標(biāo)號(hào)為1的小球2個(gè),標(biāo)號(hào)為2的小球n個(gè).若從袋子中隨機(jī)抽取1個(gè)小球,取到標(biāo)號(hào)為2的小球的概率是

1)求n的值

2)從袋子中不放回地隨機(jī)抽取2個(gè)小球,記第一次取出的小球標(biāo)號(hào)為a,第二次取出的球標(biāo)號(hào)為b

①記為事件A,求事件A的概率;

②在區(qū)間內(nèi)任取2個(gè)實(shí)數(shù)xy,求事件恒成立的概率.

【答案】(1) (2) ①;②

【解析】

1)由古典概型公式列出方程求解即可;(2)從袋子中不放回的隨機(jī)取2個(gè)球共有12個(gè)基本事件,確定的事件個(gè)數(shù)代入古典概型概率計(jì)算公式即可得解;②事件B等價(jià)于恒成立,可以看做平面中的點(diǎn),確定全部結(jié)果所構(gòu)成的區(qū)域,事件B構(gòu)成的區(qū)域,利用幾何概型面積型計(jì)算公式即可得解.

1)依題意;

2)將標(biāo)號(hào)為0的小球記為0,標(biāo)號(hào)為1的小球記為A,B,標(biāo)號(hào)為2的小球記為2,則從袋子中兩次不放回地隨機(jī)抽取2個(gè)小球可能的結(jié)果為:12種,

事件A包含4種:,所以;

②因?yàn)?/span>的最大值為4,所以事件B等價(jià)于恒成立,

可以看做平面中的點(diǎn),則全部結(jié)果所構(gòu)成的區(qū)域

事件B所構(gòu)成的區(qū)域,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校共有教職工900,分成三個(gè)批次進(jìn)行繼續(xù)教育培訓(xùn),在三個(gè)批次中男、女教職工人數(shù)如下表所示. 已知在全體教職工中隨機(jī)抽取1,抽到第二批次中女教職工的概率是0.16 .

1)求的值;

2)現(xiàn)用分層抽樣的方法在全體教職工中抽取54名做培訓(xùn)效果的調(diào)查, 問(wèn)應(yīng)在第三批次中抽取教職工多少名?

3)已知,求第三批次中女教職工比男教職工多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《算法統(tǒng)宗》全稱《新編直指算法統(tǒng)宗》,是屮國(guó)古代數(shù)學(xué)名著,程大位著.書中有如下問(wèn)題:“今有五人均銀四十兩,甲得十兩四錢,戊得五兩六錢.問(wèn):次第均之,乙丙丁各該若干?”意思是:有5人分40兩銀子,甲分104錢,戊分56錢,且相鄰兩項(xiàng)差相等,則乙丙丁各分幾兩幾錢?(注:1兩等于10錢)(

A.乙分8兩,丙分8兩,丁分8B.乙分82錢,丙分8兩,丁分78

C.乙分92錢,丙分8兩,丁分68D.乙分9兩,丙分8兩,丁分7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為1的正方體中,分別為棱的中點(diǎn).為面對(duì)角線上任一點(diǎn),則下列說(shuō)法正確的是(

A.平面內(nèi)存在直線與平行

B.平面截正方體所得截面面積為

C.直線所成角可能為60°

D.直線所成角可能為30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且離心率為.

1)求橢圓的方程;

2)已知圓方程為,過(guò)圓上任意一點(diǎn)作圓的切線,切線與橢圓交于,兩點(diǎn),為坐標(biāo)原點(diǎn),設(shè)的中點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線是由兩個(gè)定點(diǎn)和點(diǎn)的距離之積等于的所有點(diǎn)組成的,對(duì)于曲線,有下列四個(gè)結(jié)論:①曲線是軸對(duì)稱圖形;②曲線上所有的點(diǎn)都在單位圓內(nèi);③曲線是中心對(duì)稱圖形;④曲線上所有點(diǎn)的縱坐標(biāo).其中,所有正確結(jié)論的序號(hào)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖,已知是以的直角三角形鐵皮,米,分別是邊上不與端點(diǎn)重合的動(dòng)點(diǎn),且.現(xiàn)將鐵皮沿折起至的位置,使得平面平面,連接,如圖所示.現(xiàn)要制作一個(gè)四棱錐的封閉容器,其中鐵皮和直角梯形鐵皮分別是這個(gè)封閉容器的一個(gè)側(cè)面和底面,其他三個(gè)側(cè)面用相同材料的鐵皮無(wú)縫焊接密封而成(假設(shè)制作過(guò)程中不浪費(fèi)材料,且鐵皮厚度忽略不計(jì)).

1)若邊的中點(diǎn),求制作三個(gè)新增側(cè)面的鐵皮面積是多少平方米?

2)求這個(gè)封閉容器的最大體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前n項(xiàng)和為,已知,,.

(1)證明:為等比數(shù)列,求出的通項(xiàng)公式;

(2)若,求的前n項(xiàng)和,并判斷是否存在正整數(shù)n使得成立?若存在求出所有n值;若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某校高三年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖.

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30]

2

0.05

合計(jì)

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);

(3)估計(jì)這次學(xué)生參加社區(qū)服務(wù)人數(shù)的眾數(shù)、中位數(shù)以及平均數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案