定義一:對(duì)于一個(gè)函數(shù)f(x)(x∈D),若存在兩條距離為d的直線y=kx+m1和y=kx+m2,使得在x∈D時(shí),kx+m1≤f(x)≤kx+m2 恒成立,則稱函數(shù)f(x)在D內(nèi)有一個(gè)寬度為d的通道.
定義二:若一個(gè)函數(shù)f(x),對(duì)于任意給定的正數(shù)?,都存在一個(gè)實(shí)數(shù)x0,使得函數(shù)f(x)在[x0,+∞)內(nèi)有一個(gè)寬度為?的通道,則稱f(x)在正無(wú)窮處有永恒通道.
下列函數(shù):
①f(x)=lnx,
②f(x)=
sinx
x
,
③f(x)=
x2-1
,
④f(x)=e-x
其中在正無(wú)窮處有永恒通道的函數(shù)的個(gè)數(shù)為( 。
A、1B、2C、3D、4
考點(diǎn):命題的真假判斷與應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用,簡(jiǎn)易邏輯
分析:根據(jù)定義一與定義二,對(duì)所給函數(shù)進(jìn)行逐一進(jìn)行判定,解題的關(guān)鍵看函數(shù)的單調(diào)性和是否有漸近線等.
解答: 解:①f(x)=lnx,隨著x的增大,函數(shù)值也在增大,無(wú)漸近線,故不存在一個(gè)實(shí)數(shù)x0,使得函數(shù)f(x)在[x0,+∞)內(nèi)有一個(gè)寬度為?的通道,故f(x)在正無(wú)窮處無(wú)永恒通道;
②f(x)=
sinx
x
,隨著x的增大,函數(shù)值趨近于0,對(duì)于任意給定的正數(shù)?,都存在一個(gè)實(shí)數(shù)x0,使得函數(shù)f(x)在[x0,+∞)內(nèi)有一個(gè)寬度為?的通道,故f(x)在正無(wú)窮處有永恒通道;
③f(x)=
x2-1
,隨著x的增大,函數(shù)值也在增大,有兩條漸近線y=±x,對(duì)于任意給定的正數(shù)?,都存在一個(gè)實(shí)數(shù)x0,使得函數(shù)f(x)在[x0,+∞)內(nèi)有一個(gè)寬度為?的通道,故f(x)在正無(wú)窮處有永恒通道;
④f(x)=e-x,隨著x的增大,函數(shù)值趨近于0,趨近于x軸,對(duì)于任意給定的正數(shù)?,都存在一個(gè)實(shí)數(shù)x0,使得函數(shù)f(x)在[x0,+∞)內(nèi)有一個(gè)寬度為?的通道,故f(x)在正無(wú)窮處有永恒通道.
故在正無(wú)窮處有永恒通道的函數(shù)的個(gè)數(shù)為3個(gè),
故選:C
點(diǎn)評(píng):本題考查的重點(diǎn)是對(duì)新定義的理解,解題的關(guān)鍵是通過(guò)研究函數(shù)的性質(zhì),同時(shí)考查了運(yùn)算求解的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩不重合直線a、b及兩不重合平面α、β,那么下列命題中正確的是(  )
A、
a∥α
a∥β
⇒α∥β
B、
a∥α
α∥β
⇒a∥β
C、
a⊥α
β⊥α
a?β
⇒a∥β
D、
a⊥α
b⊥β
⇒a⊥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線x2=4y的焦點(diǎn)到雙曲線y2-
x2
4
=1的漸近線的距離等于( 。
A、
5
B、
5
5
C、
2
5
5
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(asinx+bcosx)•e-x在x=
π
6
處有極值,則函數(shù)y=asinx+bcosx的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是某空間幾何體的直觀圖,則該幾何體的側(cè)視圖是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差不為0的等差數(shù)列{an}的首項(xiàng)a1=2,且
1
a1
,
1
a2
,
1
a4
成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1+2b2+22b3+…+2n-1bn=an,求數(shù)列{nbn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

近年來(lái),我國(guó)許多省市霧霾天氣頻發(fā),為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),某市面向全市征召n名義務(wù)宣傳志愿者,成立環(huán)境保護(hù)宣傳組織.現(xiàn)把該組織的成員按年齡分成5組:第1組[20,25),第2組[25,30),第3組[30,35),第4組[35,40),第5組[40,45],得到的頻率分布直方圖如圖所示,已知第2組有35人.
(1)求該組織的人數(shù);
(2)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加某社區(qū)的宣傳活動(dòng),應(yīng)從第3,4,5組各抽取多少名志愿者?
(3)在(2)的條件下,該組織決定在這6名志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),用列舉法求出第3組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an+1-an=2,a1=2,等比數(shù)列{bn}滿足b1=a1,b4=a8
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{cn}滿足cn=
1
Sn
,求數(shù)列{cn}的前項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,點(diǎn)A(-1,0),B(1,0),動(dòng)點(diǎn)P滿足
PA
PB
=2|
OP
|2-2,
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)由點(diǎn)C(-2,0)向(1)中的動(dòng)點(diǎn)P所形成的曲線M引割線l,交曲線于E、F,若
BE
BF
∈[
3
4
,2],點(diǎn)Q在曲線M上,且
OE
+
OF
=t
OQ
,求t范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案